HO Del and SU UMa statistics paper Dear Colleagues, The following paper will appear in PASJ. The figures, PS/PDF files are available at: http://vsnet.kusastro.kyoto-u.ac.jp/pub/vsnet/preprints/HO_Del/ Regards, Taichi Kato === \documentclass{pasj00} %\draft \begin{document} \SetRunningHead{T. Kato et al.}{Superhumps in HO Delphini} \Received{}%{yyyy/mm/dd} \Accepted{}%{yyyy/mm/dd} \title{Superhumps in the Rarely Outbursting SU UMa-Type Dwarf Nova,\\ HO Delphini} \author{Taichi \textsc{Kato}} \affil{Department of Astronomy, Kyoto University, Sakyo-ku, Kyoto 606-8502} \email{tkato@kusastro.kyoto-u.ac.jp} \author{Daisaku \textsc{Nogami}} \affil{Hida Observatory, Kyoto University, Kamitakara, Gifu 506-1314} \email{nogami@kwasan.kyoto-u.ac.jp} \author{Marko \textsc{Moilanen}} \affil{Nyr\"{o}l\"{a} Observatory, Jyv\"{a}skyl\"{a}n Sirius ry, Kyllikinkatu 1, FIN-40100 Jyv\"{a}skyl\"{a}, Finland} \email{\rm{and}} \author{Hitoshi \textsc{Yamaoka}} \affil{Faculty of Science, Kyushu University, Fukuoka 810-8560} \email{yamaoka@rc.kyushu-u.ac.jp} \KeyWords{ accretion, accretion disks --- stars: dwarf novae --- stars: individual (HO Delphini) --- stars: novae, cataclysmic variables --- stars: oscillations } \maketitle \begin{abstract} We observed the 1994, 1996 and 2001 outbursts of HO Del. From the detection of secure superhumps, HO Del is confirmed to be an SU UMa-type dwarf nova with a superhump period of 0.06453(6) d. Based on the recent observations and the past records, the outbursts of HO Del are found to be relatively rare, with the shortest intervals of superoutbursts being $\sim$740 d. Among SU UMa-type dwarf novae with similar outburst intervals, the outburst amplitude ($\sim$5.0 mag) is unusually small. HO Del showed a rather rapid decay of the superhump amplitudes, and no regrowth of the amplitudes during the later stage, in contrast to the commonly observed behavior in SU UMa-type dwarf novae with long outburst intervals. We positively identified HO Del with a ROSAT X-ray source, and obtained a relatively large X-ray luminosity of 10$^{31.1\pm0.2}$ erg s$^{-1}$. We also performed a literature survey of SU UMa-type dwarf novae, and presented a new set of basic statistics. The SU UMa-type dwarf novae with a brightening trend or with a regrowth of superhumps near the termination of a superoutburst are found to be rather tightly confined in a small region on the (superhump period--supercycle length) plane. These features may provide a better observational distinction for the previously claimed subgroup of dwarf novae (Tremendous Outburst Amplitude Dwarf Novae). \end{abstract} \section{Introduction} Dwarf novae (DNe) are a class of cataclysmic variables (CVs), in which the instabilities in the accretion disks cause outbursts (for reviews of dwarf novae, see \cite{osa96review}). SU UMa-type dwarf novae are a class of DNe, which show superhumps during their long, bright outbursts (superoutbursts) (for basic reviews, see \cite{vog80suumastars}; \cite{war85suuma}; \cite{war95suuma}). SU UMa-type dwarf novae have short orbital periods ($P_{\rm orb}$ usually shorter than 0.1 d), qualifying them as the highly evolved population on the standard evolutionary track of CVs (\cite{rap82CVevolution}; \cite{rap83CVevolution}; \cite{kin88binaryevolution}; \cite{kol99CVperiodminimum}; \cite{kin00CVevolution}). Some objects have been even suggested to have passed the CV minimum period, at which the thermal time scales of the secondary star (Kelvin-Helmholtz time) become comparable to the mass-transfer time scales (\cite{pac71CVminimumperiod}; \cite{kin88binaryevolution}). After passing this period minimum, the mass-losing secondary stars are believed to become degenerate, and will become CVs with brown-dwarf secondaries (\cite{how97periodminimum}; \cite{pol98TOAD}; \cite{pat98evolution}; \cite{pat01SH}; \cite{pol02CVbrowndwarfproc}). Several works have been extensively made to observationally confirm possibility (\cite{cia98CVIR}; \cite{vantee99v592her}; \cite{how01llandeferi}; \cite{men01j1050}; \cite{ste01wzsgesecondary}; \cite{lit03CVBD}). There seems to be a certain degree of emerging evidence that at least some SU UMa-type dwarf novae look like to have brown dwarf secondaries. These object are also intriguing objects from the standpoint of the disk-instability model for dwarf nova outbursts. Historically, the most extreme member (WZ Sge) was selected as the prototype of a small class of SU UMa-type dwarf novae (WZ Sge-type dwarf novae), which are originally characterized by a long ($\sim$ 10 yr) outburst recurrence time and a large ($\sim$ 8 mag) outburst amplitude (\cite{bai79wzsge}; \cite{dow81wzsge}; \cite{pat81wzsge}; \cite{odo91wzsge}; \cite{kat01hvvir}). The origin of such powerful outbursts of WZ Sge has still been one of the central problems of dwarf nova accretion disks (\cite{sma93wzsge}; \cite{osa95wzsge}; \cite{las95wzsge}; \cite{war96wzsge}; \cite{min98wzsge}; \cite{mey98wzsge}; \cite{osa01egcnc}; \cite{bua02suumamodel}). From a slightly different standpoint, \citet{how95TOAD} observationally proposed that some DNe with large outburst amplitudes (mostly SU UMa-type dwarf novae) show unusual properties, and called them Tremendous Outburst Amplitude Dwarf Novae (TOADs). Although there exists an argument against this nomenclature (cf. \cite{pat96alcom}), these objects are generally considered to represent a borderline population of DNe between the most unusual WZ Sge-type dwarf novae and usual SU UMa-type dwarf novae. The TOADs and WZ Sge-type stars are also known to show extremely low frequency of normal outbursts \citep{war95suuma}. \citet{how95TOAD} and \citet{how95swumabcumatvcrv} reported that the TOADs have unusual properties of their superoutburst, particularly in that the TOADs sometimes show {\it intermediate} outbursts having properties between full superoutbursts and SU UMa-type normal outbursts, and in that some of the superoutbursts of the TOADs are followed by post-superoutburst rebrightenings. The latter property has been subsequently recognized as a common feature with soft X-ray transients (black-hole transients) \citep{kuu96TOAD}. The most dramatic manifestation of this phenomenon was seen in EG Cnc which showed six successive post-superoutburst rebrightenings (\cite{kat97egcnc}; \cite{mat98egcncqui}; \cite{pat98egcnc}). \citet{how95TOAD} proposed that the unusual properties of the TOADs are a result of low mass-transfer rate and low viscosity in quiescence. This possibility has been tested by several authors to more precisely reproduce the observed properties (\cite{osa95wzsge}; \cite{osa97egcnc}; \cite{mey98wzsge}; \cite{osa01egcnc}). From the observational side, both TOADs and WZ Sge-type dwarf novae are known to (almost exclusively) show lengthening of the superhump period during the superoutburst plateau (\cite{sem97swuma}; \cite{nog98swuma}; \cite{kat98super}; \cite{bab00v1028cyg}; \cite{kat01wxcet}; \cite{kat01hvvir}), whose origin is still poorly understood. \citet{bab00v1028cyg} showed that a significant deviation from the linear declining trend and a regrowth of the superhumps during the terminal stage of a superoutburst in V1028 Cyg, whose outburst amplitude is comparable to that of TOADs. These phenomena, although still poorly described or understood, may provide an additional clue for understanding the unusual behavior of the accretion disks in large-amplitude, rarely outbursting SU UMa-type dwarf novae, which are sometimes referred to as TOADs or WZ Sge-type. HO Delphini (= S 10066) is a dwarf nova discovered by \citet{hof67an29043}. \citet{hof67an29043} reported two outburst in 1963 October and 1966 September. Although the object was given the permanent variable star designation \citep{NameList56}, virtually no observation had been reported until recent years. This lack of observation was partly because of the \timeform{1D} error in the original discovery report by \citet{hof67an29043}. The error was corrected in the third volume of the fourth edition of the GCVS \citep{GCVS}. \citet{DownesCVatlas1} gave a finding chart and \citet{kat99var5} reported precise coordinates. \citet{mun98CVspec5} recorded relatively strong Balmer and He~{\sc i} emission lines, confirming the CV classification. The He~{\sc ii} 4686\AA\, emission line was probably weakly present. The object has been regularly monitored by the VSNET\footnote{ $\langle$http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/$\rangle$} members since 1994. In spite of the monitoring, only three confirmed outbursts have been recorded (1994 August--September, 1996 August--September, 2001 August--September). The relatively low occurrence of the outbursts is consistent with the initial finding by \citet{hof67an29043}. We observed HO Del during the two outbursts in 1994 and 2001. We also performed several snapshot observations during the 1996 outburst. \section{Observation} The 1994 and 1996 observations were performed using a CCD camera (Thomson TH~7882, 576 $\times$ 384 pixels, on-chip 2 $\times$ 2 binning adopted) attached to the Cassegrain focus of the 60-cm reflector (focal length = 4.8 m) at Ouda Station, Kyoto University \citep{Ouda}. An interference filter was used which had been designed to reproduce the Johnson $V$ band. The frames were first corrected for standard de-biasing and flat fielding, and were then processed by a microcomputer-based photometry package developed by one of the authors (TK). The 2001 observations were performed at Nyr\"{o}l\"{a} Observatory using a 40-cm Schmidt--Cassegrain telescope and an unfiltered ST-7E CCD camera. The images were analyzed with the AIP4WIN aperture photometry package. The Ouda observations used GSC 1100.64 (GSC $V$ magnitude 12.76) as the comparison star, and GSC 1100.213 ($V$ = 13.28) and GSC 1100.98 ($V$ = 13.76) as the check stars. The Nyr\"{o}l\"{a} observations used GSC 1100.324 ($V$ = 12.16) as the primary comparison star and GSC 1100.213 as the check star. The constancy of the comparison stars during the runs was confirmed by comparisons with the check stars. Barycentric corrections to the observed times were applied before the following analysis. The log of observations is summarized in table \ref{tab:log}. \begin{table*} \caption{Journal of CCD photometry.}\label{tab:log} \begin{center} \begin{tabular}{ccrcccrccc} \hline\hline \multicolumn{3}{c}{Date}& Start--End$^*$ & Filter & Exp(s) & $N$ & Mean mag$^\dagger$ & Error & Obs$^\ddagger$ \\ \hline 1994 & August & 26 & 49591.015--49591.119 & $V$ & 60 & 120 & 1.146 & 0.005 & O \\ & & 27 & 49592.014--49592.219 & $V$ & 60 & 141 & 1.224 & 0.006 & O \\ & & 28 & 49593.065--49593.174 & $V$ & 90 & 91 & 1.412 & 0.003 & O \\ & & 29 & 49594.021--49594.233 & $V$ & 90 & 122 & 1.529 & 0.003 & O \\ & & 30 & 49595.006--49595.217 & $V$ & 120 & 59 & 1.607 & 0.010 & O \\ & & 31 & 49596.184--49596.218 & $V$ & 120 & 20 & 1.565 & 0.020 & O \\ & September & 1 & 49597.024--49597.240 & $V$ & 120 & 99 & 1.674 & 0.004 & O \\ & & 2 & 49598.137--49598.170 & $V$ & 120 & 7 & 1.843 & 0.084 & O \\ 1996 & September & 8 & 50334.972--50334.976 & $V$ & 90 & 5 & 2.132 & 0.032 & O \\ & & 15 & 50341.904--50341.905 & $V$ & 30 & 3 & 3.550 & 0.585 & O \\ 2001 & August & 28 & 52150.296--52150.461 & none & 13 & 706 & 2.104 & 0.004 & N \\ \hline \multicolumn{10}{l}{$^*$ BJD$-$2400000.} \\ \multicolumn{10}{l}{$^\dagger$ Differential magnitudes to the comparison star.} \\ \multicolumn{10}{l}{$^\ddagger$ O (Ouda), N (Nyr\"{o}l\"{a})} \\ \end{tabular} \end{center} \end{table*} \section{Results} \subsection{Course of Outburst} The early stage of the 2001 August--September outburst (as shown in subsection \ref{sec:sh}, both 1994 August--September outburst and 2001 August--September outburst were superoutbursts) was relatively well followed by the VSNET observers. The two superoutbursts in 1996 and 2001 are shown in figure \ref{fig:out2}. Although the start and the termination of each superoutbursts were not severely constrained, the apparent duration ($\sim$13 d) is characteristic to that of an ordinary SU UMa-type superoutburst. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){out2.eps} \FigureFile(88mm,60mm){fig1.eps} \end{center} \caption{Light curve of the 1996 August--September and 2001 August--September superoutbursts. The large and small dots represent visual positive observations and upper limit observations, respectively, reported to VSNET.} \label{fig:out2} \end{figure} Figure \ref{fig:out} shows the light curve of the 1994 August--September superoutburst. The duration of the outburst was longer than $\sim$10 d. Based on the $V$-band CCD observations, the object linearly faded at a rate of 0.14 mag d$^{-1}$ between BJD 2449591 and 2449594. This rate is quite characteristic to an SU UMa-type superoutburst plateau (cf. \cite{war85suuma}; \cite{pat93vyaqr}; \cite{kat02v359cen}). The rate of decline became smaller toward the late stage of the superoutburst. The rate reached a minimum of 0.03 mag d$^{-1}$ between BJD 2449595 and 2449597. Such a phenomenon was observed in V1028 Cyg \citep{bab00v1028cyg}. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){out.eps} \FigureFile(88mm,60mm){fig2.eps} \end{center} \caption{Light curve of the 1994 August--September superoutburst. The filled squares with error bars are our $V$-band CCD observations. The open circles and small dots are visual observations and upper limit observations, respectively, reported to VSNET.} \label{fig:out} \end{figure} \subsection{Superhump Period}\label{sec:sh} Superhumps were clearly present both in 1994 and 2001 observations, clarifying the SU UMa-type nature of HO Del. Figure \ref{fig:ho28} shows the best representative light curve of the superhumps observed on 2001 August 28. Since the 1994 observations had shorter nightly coverages, we first determined an approximate superhump period ($P_{\rm SH}$) from this longest and highest quality run, and refine the period using the 1994 observation. A period analysis of the 2001 August 28 with the Phase Dispersion Minimization (PDM: \cite{PDM}), after removing the linear trend, yielded a period of 0.0642(2) d. The error of the period was estimated using the Lafler--Kinman class of methods, as applied by \citet{fer89error}. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){ho28.eps} \FigureFile(88mm,60mm){fig3.eps} \end{center} \caption{Superhumps in HO Del observed on 2001 August 28.} \label{fig:ho28} \end{figure} The well-observed portion of the 1994 observation (August 26--29) were analyzed in a similar way, after removing the linear decline trend of the outburst, and corrected for a small nightly deviations from the linear trend. The resultant theta diagram is shown in figure \ref{fig:pdm}. Among the possible one-day aliases, the frequency 15.496$\pm$0.013 d$^{-1}$, corresponding to $P_{\rm SH}$ = 0.06453(6) d, is the only acceptable period in comparison with the 2001 observation. This superhump period supersedes the previously reported preliminary value cited in \citet{nog97sxlmi}. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){pdm.eps} \FigureFile(88mm,60mm){fig4.eps} \end{center} \caption{Phase Dispersion Minimization analysis of the 2001 observation (August 26--29). See text for the selection of the period.} \label{fig:pdm} \end{figure} \section{Superhump Profile} The superhump profile on 2001 August 28 (the observation was performed within 2 d of the outburst rise)\footnote{ Initial outburst detection was made by M. Reszelski on August 27.972 UT at a visual magnitude of 13.9. The object was not detected in outburst 1 d before this observation. See vsnet-alert 6477, $\langle$http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/Mail/alert6000/msg00477.html$\rangle$. }, was quite characteristic of fully developed SU UMa-type superhumps (\cite{vog80suumastars}; \cite{war85suuma}). The profiles were, however, different during the 1994 outburst (figure \ref{fig:phase}).\footnote{ The start of the 1994 August outburst was not well-constrained. The initial outburst detection was made on 1994 August 24.600 UT at a visual magnitude of 13.6 by M. Moriyama. No observations were reported for a month preceding this detection. The reported magnitude, however, suggests that the outburst was detected during its relatively early stage. } The superhump signal decayed rather rapidly. After BJD 2449594 (1994 August 29, $\sim$5 d after the initial outburst detection), the superhump signal almost disappeared. \begin{figure} \begin{center} % \FigureFile(88mm,110mm){phase.eps} \FigureFile(88mm,110mm){fig5.eps} \end{center} \caption{Nightly averaged hump profiles during the 1994 outburst, folded by $P_{\rm SH}$ = 0.06453 d. The phase zero corresponds to BJD 2449591.050. The superhump signal decayed rather rapidly. After BJD 2449594, the superhump signal almost disappeared. } \label{fig:phase} \end{figure} \section{Discussion} \subsection{General Properties of Outbursts}\label{sec:out} In spite of the monitoring by the VSNET members, no confirmed normal outbursts have been recorded between 1994 and 2002. Since the maximum of the superoutbursts reached a magnitude of 13.6, at least some of normal outbursts, which are expected to have maximum magnitude of 14.1--14.6 \citep{war85suuma}, should have been recorded by modern instruments. The lack of such detections seems to suggest that normal outbursts are indeed rare in HO Del. The shortest intervals of the recorded superoutbursts was $\sim$740 d. This interval suggests that superoutbursts are also relatively rare, although some of the outbursts or superoutbursts should have been missed during the unavoidable seasonal gaps. The small number of the recorded outbursts (likely superoutbursts) inferred from the literature \citep{hof67an29043} also seems to suggest a low outburst frequency. Among well-observed SU UMa-type dwarf novae, a small number of object have comparable intervals of superoutbursts: UV Per ($\sim$960 d), VY Aqr (350--800 d), WX Cet ($\sim$1000 d), SW UMa (459--954 d), V1028 Cyg (380--450 d), V1251 Cyg ($\sim$1160 d), EF Peg (1000--1400 d, VSNET; \cite{kat01hvvir}), BC UMa ($>$1800 d or $\sim$1040 d, \cite{kat01hvvir},\footnote{See also $\langle$http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/DNe/\\bcuma0302.html$\rangle$. } DV UMa ($\sim$770 d, \cite{nog01dvuma}), V725 Aql ($\geq$1000 d, \cite{uem01v725aql}) Most of these objects are large-amplitude dwarf novae, sometimes classified as TOADs (\cite{how95TOAD}). Other less well-documented systems with low occurrence of normal outbursts and intervals of superoutbursts likely comparable to HO Del include: PU Per (\cite{kat95puper}; \cite{kat99puper}), V844 Her (\cite{kat00v844her}; \cite{tho02gwlibv844herdiuma}), QY Per (\cite{bus79VS17}; \cite{kat00qyperiauc}), V359 Cen (\cite{kat02v359cen}), and KV Dra (\cite{nog00kvdra}). The outburst cycle lengths and the apparently low occurrence of normal outbursts in HO Del seem to share common properties with the so-called TOADs or WZ Sge-type stars, although the outburst amplitude ($\sim$5.0 mag) is smaller than those of the TOADs or WZ Sge-type stars. If the low outburst occurrence of HO Del is confirmed by future more intensive observations, HO Del may be a rare object with a long outburst cycle length and a rather normal outburst amplitude. A normal outburst amplitude naturally suggests a normal quiescent luminosity (cf. \cite{war87CVabsmag}), which is indicative of a normal mass-transfer rate. In contrast, a long recurrence time would suggest a low mass-transfer rate \citep{ich94cycle}. If the mass-transfer rate indeed turns out to be normal, the occurrence of outbursts may be somehow suppressed in HO Del. \subsection{Distance, proper motion, and X-ray Luminosity} By applying Warner's relation \citep{war87CVabsmag} using the newly established $P_{\rm SH}$,\footnote{ Since the difference between $P_{\rm SH}$ and the orbital period ($P_{\rm orb}$) is expected to be a few \% at this period \citep{StolzSchoembs}, we can safely use $P_{\rm SH}$ as a substitute for $P_{\rm SH}$ in applying to Warner's relation. \citet{pat98evolution} listed a likely orbital period without details. Although this period seems to be consistent with $P_{\rm SH}$, we probably need accurate $P_{\rm orb}$ determination by radial-velocity studies before making a final conclusion on the difference between $P_{\rm SH}$ and $P_{\rm orb}$. } the maximum $M_V$ is expected to be +5.2 (see also a discussion in \cite{kat02v592her}). An inclination effect \citep{war86NLabsmag} is likely to be neglected because this star has a low to moderate inclination, as inferred from the lack of eclipses and the single-peaked appearance of the emission lines \citep{mun98CVspec5}. Since Warner's relation is expected to apply to normal outbursts of SU UMa-type dwarf novae (cf. \cite{kat02v592her}; \cite{can98DNabsmag}), we use a $-$0.5 mag correction to derive an expected maximum $M_V$ for superoutbursts. Using the maximum visual magnitude of 13.6 for the recent superoutbursts, the distance is estimated to be $\sim$600 pc. Given the above uncertainties, the error of the distance modulus is expected to be 0.3 mag, which makes a range of the likely distance to be 400--800 pc. In order to study a possible proper motion, we examined the available astrometric catalogs and the scanned images (Table \ref{tab:astrometry}). The errors are typically less than \timeform{0.3''}. Although the literal values of declination were slightly different, no distinct proper motion was detected in a comparison of DSS 1 and 2 scans. This indicates that the proper motion of HO Del is smaller than \timeform{0.02''} yr$^{-1}$. USNO B1.0 \citep{USNOB10} shows zero proper motion for this object. This lack of a detectable proper motion is consistent with the above distance estimate. \begin{table} \caption{Astrometry of HO Del.}\label{tab:astrometry} \begin{center} \vspace{10pt} \begin{tabular}{cccc} \hline\hline Source & R. A. & Decl. & Epoch \\ & \multicolumn{2}{c}{(J2000.0)} & \\ \hline USNO A2.0 & 20 36 55.514 & +14 03 10.15 & 1953.682 \\ USNO B1.0 & 20 36 55.485 & +14 03 09.74 & 1976.0 \\ GSC 2.2.1 & 20 36 55.498 & +14 03 09.46 & 1990.628 \\ \hline \end{tabular} \end{center} \end{table} HO Del is quite reasonably identified with a ROSAT source 1RXS J203654.3+140301 \citep{ROSATFSCiauc}, which has a 52--201 keV count rate of 0.030 count s$^{-1}$. By following the formulation by \citep{ver97ROSAT}, we obtain an X-ray luminosity of 10$^{31.1\pm0.2}$ erg s$^{-1}$ (the error includes both errors of the count rate and the distance estimate). Although we will need future different ways of, or an even direct, distance estimates, this value would potentially make HO Del one of the luminous X-ray sources among dwarf novae \citep{ver97ROSAT}. This luminosity would suggest that the white dwarf of HO Del may be weakly magnetic, as in intermediate polars (IPs) \citep{ver97ROSAT}. If the inner disk is truncated by the magnetized white dwarf in an IP, the apparently low occurrence of outbursts in HO Del (subsection \ref{sec:out}) may be a result of resulting suppression of the disk instability \citep{ang89DNoutburstmagnetic}. Although the strength of the quiescent He~{\sc ii} emission is not as striking as in other typical intermediate polars, a search for IP-type coherent oscillations would be meaningful. \section{Statistics and Late-Time Superhump Evolution in SU UMa-Type Dwarf Novae} HO Del showed a relatively rapid decay of the superhump amplitudes. A similar phenomenon was observed in V1028 Cyg \citep{bab00v1028cyg} and DM Dra \citep{kat02dmdra}. The subsequent behavior was different between HO Del and V1028 Cyg in that no regrowth of the superhumps during the later stage, during which the rate of decline became temporarily slower, was observed in contrast to the V1028 Cyg case \citep{bab00v1028cyg}. Since it has been becoming evident that the regrowth of the superhumps is rather commonly seen in SU UMa-type dwarf novae with infrequent outbursts, we performed a literature survey of SU UMa stars in order to see the relation between this phenomenon, as well as the brightening trend near the termination of a superoutburst, and the other parameters. Figure \ref{fig:reb} shows a comparison of systems with and without brightening trend near the termination of a superoutburst. \citet{ish03hvvir} also provides a well-recorded presentation of the same phenomenon in HV Vir. Figure \ref{fig:v1028sh} shows a representative example of regrowth of superhumps near the termination of a superoutburst \citep{bab00v1028cyg}. \begin{figure} \begin{center} % \FigureFile(88mm,120mm){reb.eps} \FigureFile(88mm,120mm){fig6.eps} \end{center} \caption{Brightening trend near the termination of a superoutburst. [Upper: with brightening (V1028 Cyg: data from \cite{bab00v1028cyg}). Lower: without brightening (CC Cnc: data from \citet{kat02cccnc}, the first night data were omitted because of a different instrument emplyed)]. The dashed lines represent linear fits to the earlier stage of the plateau portion. The upward deviation in V1028 Cyg is evident.} \label{fig:reb} \end{figure} \begin{figure} \begin{center} % \FigureFile(75mm,150mm){v1028sh.eps} \FigureFile(75mm,150mm){fig7.eps} \end{center} \caption{Example of regrowth of superhumps near the termination of a superoutburst [reproduced from Figure 6 in \citet{bab00v1028cyg} by permission].} \label{fig:v1028sh} \end{figure} The result is presented in table \ref{tab:regrowth}. The ``Yes'' classification in the ``Rise'' field (brightening near the termination of a superoutburst) generally corresponds to more than 0.1 mag deviation from the linear decline trend. The ``Yes'' classification in the ``Regrowth'' field (regrowth of the superhumps during the terminal stage of a superoutburst) corresponds to a detectable regrowth of the superhumps {\it before} the start of the final, rapid decline. A question mark (?) follows if observations did not sufficiently covered the late stages of a superoutburst. Since it is not well-known whether the same star exhibits the same evolution of late-time outburst behavior and superhumps during different superoutbursts, we tried to examine each superoutburst separatedly whenever possible. In some cases, a combined result from a set of less favorably covered different superoutburst is presented. In the table and the following discussion, we, in principle, used $P_{\rm SH}$ values, which were better determined than $P_{\rm orb}$ values in many systems. In examining correlations between $P_{\rm SH}$ and other parameters, we predicted the $P_{\rm SH}$'s of these objects based on the empirical relation \citep{mol92SHexcess}. In ER UMa stars (ER UMa, V1159 Ori, RZ LMi, DI UMa and IX Dra: see \cite{kat95eruma}; \cite{nog95rzlmi}; \cite{kat99erumareview}), we did not examine the evolution of the superhumps of these objects in the same manner, because there is emerging evidence of unusual superhump evolution at least in one of these systems \citep{kat03erumaSH}, suggesting that superhumps in ER UMa (and possibly in other ER UMa stars) are different in nature from other SU UMa-type dwarf novae. So-called helium dwarf novae (CR Boo: \cite{woo87crboo}; \cite{pat97crboo}; \cite{pro97crboo}; \cite{kat00crboo}; \cite{kat01crboo}, V803 Cen: \cite{odo87v803cen}; \cite{odo89v803cen}; \cite{pat00v803cen}; \cite{kat00v803cen}; \cite{kat01v803cen}, CP Eri: \cite{abb92alcomcperi}; \cite{gro01cperi}, KL Dra: \cite{woo02kldra}) were not included in this survey, although two unusually short-period, hydrogen rich systems (V485 Cen and EI Psc = 1RXS J232953.9+062814) were included. The typical superhump period and supercycle length ($T_s$) are given in the initial line of each object. These data are usually taken from \citet{nog97sxlmi}, supplemented with new measurements based on the references listed. \begin{table*} \caption{Outburst parameters and superhump regrowth in SU UMa-type stars.} \label{tab:regrowth} \begin{center} \begin{tabular}{llcccc} \hline\hline Object$^*$ & $P_{\rm SH}$ & $T_s$$^\dagger$ & Rise$^\ddagger$ & Regrowth$^\S$ & References \\ \hline V485 Cen (1997) & 0.04216 & 320: & No & No & 1 \\ EI Psc (2001) & 0.04637 & $\cdots$ & No & No & 2, 3, 4 \\ DI UMa (1996) & 0.05529 & 25--45 & No & ER & 5 \\ \phantom{DI UMa} (1998) & & & No & $\cdots$ & 6 \\ V844 Her (2000+) & 0.05592 & 220--290 & Yes? & $\cdots$ & 7, 8, 9 \\ V2176 Cyg (1996) & 0.0561 & $>$2000 & No$^\|$ & No? & 10 \\ V592 Her (1998) & 0.056498 & 4000: & Yes? & Yes? & 11, 12 \\ \phantom{V592 Her} (1968) & & & Yes? & $\cdots$ & 13, 14 \\ UW Tri (1995) & 0.0569 & 4000: & $\cdots$ & $\cdots$ & 15 \\ LL And (1993) & 0.057006 & 5000 & No? & $\cdots$ & 16, 17 \\ WZ Sge (2001) & 0.05721 & 8200--11000 & No$^\|$ & No & 18, 19, 20 \\ AL Com (1995) & 0.05735 & 7000 & No$^\|$ & No? & 21, 22, 23, 24 \\ MM Hya (2001) & 0.05785 & 380 & Yes & $\cdots$ & 25 \\ PU CMa (2003+) & 0.05789 & 362--391 & No & No? & 26, 27, 28 \\ HV Vir (1992) & 0.05820 & 3800 & Yes? & $\cdots$ & 29, 30 \\ \phantom{HV Vir} (2001) & & & Yes & Yes & 31 \\ SW UMa (1996) & 0.05833 & 459--954 & Yes? & Yes? & 32, 33, 34 \\ \phantom{SW UMa} (2002) & & & Yes & Yes & 35 \\ V1141 Aql (2002) & 0.05930 & 340: & $\cdots$ & $\cdots$ & 36, 37 \\ RZ LMi (1995+) & 0.05946 & 19 & No & ER & 38, 39 \\ WX Cet (1998) & 0.05949 & 1000: & Yes & Yes & 40 \\ \phantom{WX Cet} (1991) & & & Yes? & Yes? & 41 \\ \phantom{WX Cet} (1989) & & & Yes? & $\cdots$ & 42 \\ KV Dra (2002) & 0.06012 & 840: & Yes & Yes? & 43, 44 \\ \phantom{KV Dra} (2000) & & & Yes? & $\cdots$ & 45, 46 \\ T Leo (1993) & 0.0602 & 420 & $\cdots$ & $\cdots$ & 47, 48, 49 \\ EG Cnc (1996) & 0.06038 & 7000 & No? & No? & 50, 51, 52 \\ RX Vol (2003) & 0.06117 & $\cdots$ & Yes & Yes & 53 \\ MM Sco (2002) & 0.06136 & 298--497 & $\cdots$ & $\cdots$ & 54 \\ V1028 Cyg (1995) & 0.06154 & 380--450 & Yes & Yes & 55 \\ UZ Boo (1994) & 0.0619: & 5800? & No? & $\cdots$ & 30, 56, 57, 58 \\ V1040 Cen (2002) & 0.0622 & 211 & No? & $\cdots$ & 59, 60 \\ AQ Eri (1991) & 0.06225 & 300: & $\cdots$ & $\cdots$ & 61 \\ CI UMa (1995,2003) & 0.06264 & 140 & No? & $\cdots$ & 62, 63 \\ XZ Eri (2003) & 0.06281 & 396: & Yes & Yes & 64, 65 \\ GO Com (2003) & 0.06297 & (2900:/$N$?) & Yes? & No? & 66 \\ V402 And (2000,1985) & 0.06339 & $\cdots$ & Yes? & $\cdots$ & 67, 68, 69 \\ CG CMa (1999) & 0.0636: & $\cdots$ & Yes?$^\|$ & $\cdots$ & 70, 71 \\ V436 Cen (1978) & 0.06383 & 630 & Yes? & $\cdots$ & 72, 73 \\ V1159 Ori (1995+) & 0.0641 & 44.6--53.3 & No? & ER & 39, 74, 75, 76, 77 \\ V2051 Oph (1998) & 0.06423 & 227 & No? & No? & 78, 79 \\ VY Aqr (1986) & 0.0645 & 350--800? & Yes? & Yes? & 80 \\ BC UMa (2000) & 0.06452 & $>$1800 & $\cdots$ & $\cdots$ & 81 \\ HO Del (1994+) & 0.06453 & 740: & Yes & No & 82 \\ OY Car (1980) & 0.064544 & 346 & Yes? & Yes? & 83, 84 \\ \phantom{OY Car} (1985) & & & Yes? & $\cdots$ & 85 \\ EK TrA (1985) & 0.0649 & 485 & Yes & $\cdots$ & 86 \\ 1RXP J113123+4322.5 (2002) & 0.06495 & 370 & Yes? & $\cdots$ & 87, 88 \\ TV Crv (1994) & 0.0650 & 390--450 & Yes? & Yes? & 89 \\ \phantom{TV Crv} (2001) & & & Yes & Yes & 90 \\ \hline \multicolumn{6}{l}{$^*$ Year of the outburst in parentheses.} \\ \multicolumn{6}{l}{$^\dagger$ Typical supercycle length (d), mainly taken from \citet{nog97sxlmi}.} \\ \multicolumn{6}{l}{\phantom{$^\dagger$} The others are estimates from VSNET observations.} \\ \multicolumn{6}{l}{$^\ddagger$ Brightening near the termination of superoutburst.} \\ \multicolumn{6}{l}{$^\S$ Regrowth of the superhumps during the terminal stage of superoutburst.} \\ \multicolumn{6}{l}{\phantom{$^\S$} ER: ER UMa stars, not examined (see text)} \\ \multicolumn{6}{l}{$^\|$ Before the ``dip'' fading in WZ Sge-type dwarf novae.} \\ \end{tabular} \end{center} \end{table*} \begin{table*} \addtocounter{table}{-1} \caption{(continued)} \begin{center} \begin{tabular}{llcccc} \hline\hline Object & $P_{\rm SH}$ & $T_s$ & Rise & Regrowth & References \\ \hline ER UMa (1995+) & 0.06556 & 43 & No? & ER & 39, 91, 92 \\ AQ CMi (1996+) & 0.06625 & 410? & $\cdots$ & $\cdots$ & 93, 94, 95 \\ UV Per (2001) & 0.06641 & 960 & Yes? & Yes? & 96 \\ \phantom{UV Per} (1989) & & & $\cdots$ & $\cdots$ & 97 \\ CT Hya (1999) & 0.06643 & 280 & No? & $\cdots$ & 98 \\ \phantom{CT Hya} (1995) & & & No? & No? & 99 \\ \phantom{CT Hya} (2000) & & & No? & No? & 100 \\ \phantom{CT Hya} (2002) & & & No? & No? & 100 \\ IX Dra (2001+) & 0.06700 & 53 & No? & ER & 101, 102 \\ DM Lyr (1996) & 0.0673 & 250 & No? & $\cdots$ & 103 \\ \phantom{DM Lyr} (1998) & & & No? & $\cdots$ & 103 \\ AK Cnc (1995) & 0.06749 & 210--390 & Yes? & Yes? & 104 \\ \phantom{AK Cnc} (1992) & & & $\cdots$ & $\cdots$ & 105 \\ SS UMi (1998) & 0.06778 & 84.7 & No & No & 106, 107, 108 \\ SX LMi (1994) & 0.06850 & 279 & Yes? & No? & 109, 110 \\ V701 Tau (1995) & 0.0689 & 380: & $\cdots$ & $\cdots$ & 112 \\ V550 Cyg (2000) & 0.0689: & $\cdots$ & $\cdots$ & $\cdots$ & 113 \\ V1504 Cyg (2001) & 0.0690 & 137 & No & $\cdots$ & 106, 114, 115 \\ KS UMa (1998,2003) & 0.07009 & 254 & No? & $\cdots$ & 116, 117, 118 \\ RZ Sge (1996) & 0.07042 & 266 & No & No & 119 \\ \phantom{RZ Sge} (1994) & & & No? & No? & 120 \\ \phantom{RZ Sge} (1981) & & & No? & Yes? & 121 \\ V1208 Tau (2000) & 0.07060 & $\cdots$ & No? & No? & 122 \\ IR Gem (1982) & 0.07076 & 183 & $\cdots$ & $\cdots$ & 106, 123 \\ \phantom{IR Gem} (1991) & & & $\cdots$ & $\cdots$ & 124 \\ TY Psc (2001) & 0.0708 & 210 & No? & $\cdots$ & 125, 126 \\ CY UMa (1999) & 0.07210 & 300 & No? & No? & 127 \\ \phantom{CY UMa} (1995) & & & No? & No? & 128 \\ PU Per (1998) & 0.0733 & $>$500 & $\cdots$ & $\cdots$ & 129 \\ FO And (1994) & 0.07411 & 100--140 & No? & No? & 106, 130 \\ VW CrB (1997+) & 0.0743 & 240--370 & No? & $\cdots$ & 131, 132, 133 \\ KV And (1994) & 0.07434 & 240 & No? & No? & 134 \\ \phantom{KV And} (2002) & & & No & No? & 135 \\ AW Sge (2000) & 0.0745 & $\cdots$ & $\cdots$ & $\cdots$ & 136 \\ NSV 10934 (2003) & 0.07478 & $\cdots$ & No? & No? & 54 \\ V368 Peg (1999,2000) & 0.075 & 390? & No? & No? & 137, 138, 139 \\ OU Vir (2003+) & 0.07505 & 410:/$N$ & No? & No? & 140, 141, 142 \\ CC Cnc (2001) & 0.075518 & 370 & No & No & 143 \\ \phantom{CC Cnc} (1996) & & & No? & $\cdots$ & 144 \\ DM Dra (2000,2003) & 0.07567 & 440: & No? & No? & 145, 146, 147 \\ VZ Pyx (1996,1998) & 0.07568 & 270 & No? & $\cdots$ & 148, 149 \\ IY UMa (2000) & 0.07588 & 285.5 & No & No & 79, 150, 151, 152 \\ \phantom{IY UMa} (2002) & & & No & No? & 152 \\ AY Lyr (1987) & 0.07597 & 210 & No & No & 153, 154 \\ \phantom{AY Lyr} (1977) & & & No & No & 155 \\ V1251 Cyg (1991) & 0.07604 & 1160 & $\cdots$ & $\cdots$ & 156 \\ HT Cas (1985) & 0.076077 & $>$450? & $\cdots$ & $\cdots$ & 157, 158, 159 \\ QY Per (1999) & 0.07681 & $>$1800? & No & No & 160 \\ QW Ser (2002) & 0.07709 & 230--276 & Yes? & $\cdots$ & 161, 162, 163 \\ \phantom{QW Ser} (2000) & & & No? & $\cdots$ & 161 \\ BE Oct (1996) & 0.07711 & $\cdots$ & $\cdots$ & $\cdots$ & 164 \\ \hline \end{tabular} \end{center} \end{table*} \begin{table*} \addtocounter{table}{-1} \caption{(continued)} \begin{center} \begin{tabular}{llcccc} \hline\hline Object & $P_{\rm SH}$ & $T_s$ & Rise & Regrowth & References \\ \hline VW Hyi (1972) & 0.07714 & 179 & No & No & 165 \\ \phantom{VW Hyi} (1974) & & & No & No & 166 \\ \phantom{VW Hyi} (1978) & & & No & No & 167 \\ \phantom{VW Hyi} (1995) & & & No & No & 168 \\ WX Hyi (1977) & 0.07737 & 174 & No & No & 106, 169 \\ Z Cha (1984+) & 0.07740 & 287 & No & No & 170, 171, 172, 173 \\ \phantom{Z Cha} (1987) & & & No & No & 174 \\ TT Boo (1993) & 0.07811 & 245 & $\cdots$ & $\cdots$ & 175 \\ WY Tri (2001) & 0.078483 & $\cdots$ & $\cdots$ & $\cdots$ & 176, 177 \\ RZ Leo (2000) & 0.078529 & 5800: & Yes & No? & 178 \\ V630 Cyg (1996,1999) & 0.0789 & 145--$>$290 & No & $\cdots$ & 179 \\ SU UMa (1989) & 0.07904 & 160 & No & No? & 180 \\ V1113 Cyg (1994) & 0.0792 & 189.8 & No? & $\cdots$ & 181, 182 \\ SDSSp J173008.38+624754.7 (2001) & 0.07941 & 327: & No? & No? & 183, 184, 185 \\ AW Gem (1995) & 0.07943 & 300 & No? & $\cdots$ & 186 \\ CU Vel & 0.07999 & 700--900 & $\cdots$ & $\cdots$ & 187, 188 \\ DH Aql (2002) & 0.08003 & 300 & No & No & 189 \\ \phantom{DH Aql} (1994) & & & $\cdots$ & $\cdots$ & 190 \\ PV Per (1996) & 0.0805 & 180? & $\cdots$ & $\cdots$ & 191, 192 \\ HS Vir (1996) & 0.08077 & 186 or 371 & No? & No? & 193, 194 \\ V359 Cen (2002+) & 0.08092 & 307--397 & $\cdots$ & $\cdots$ & 65, 195 \\ V660 Her (1999,1995) & 0.081 & 380: & No & $\cdots$ & 28, 196, 197, 198 \\ V503 Cyg (1994,1998) & 0.08101 & 89 & No & No? & 199, 200, 201 \\ BR Lup (1986--2003) & 0.08220 & 140 & $\cdots$ & No? & 202, 203, 204 \\ NSV 09923 (2003) & 0.08253 & $\cdots$ & $\cdots$ & $\cdots$ & 205 \\ RX Cha (1998) & 0.0839 & 430: & $\cdots$ & $\cdots$ & 206, 207 \\ V877 Ara (2002) & 0.08411 & 285--374 & No? & No? & 27 \\ AB Nor (2002) & 0.08438 & 880:/$N$ & $\cdots$ & $\cdots$ & 54 \\ CP Dra (2001+) & 0.08474 & 400? & No? & $\cdots$ & 208, 209 \\ V369 Peg (1999) & 0.08484 & 320: & No? & No? & 68, 210 \\ TU Crt (1998,2001+) & 0.0854 & 380--530 & No? & $\cdots$ & 211, 212, 213, 214 \\ HV Aur (1994,2002) & 0.08559 & $\cdots$ & $\cdots$ & $\cdots$ & 215, 216 \\ V589 Her (2002) & 0.0864 & $\cdots$ & $\cdots$ & $\cdots$ & 217 \\ EF Peg (1991) & 0.08705 & 1000--1400 & No? & No? & 218, 219, 220 \\ \phantom{EF Peg} (1997) & & & No? & No? & 221 \\ TY PsA (1982,1984) & 0.08765 & 220 & No? & No? & 222, 223, 224 \\ BF Ara (2002+) & 0.08797 & 84.3 & No & No & 225, 226, 227 \\ KK Tel (2002) & 0.08803 & 394 & $\cdots$ & $\cdots$ & 27 \\ V452 Cas (1999) & 0.0881 & 320/$N$? & No & $\cdots$ & 228, 229 \\ DV UMa (1999) & 0.08869 & 770 & Yes? & No? & 30, 230, 231 \\ \phantom{DV UMa} (1997) & & & No? & $\cdots$ & 232 \\ V419 Lyr (1999) & 0.0901 & 340: & No? & No? & 233, 234 \\ UV Gem (2002) & 0.0902 & 144? & $\cdots$ & $\cdots$ & 235, 236, 237 \\ V344 Lyr (1993) & 0.09145 & 109.6 & No? & No? & 106, 238 \\ YZ Cnc (1978,1988+) & 0.09204 & 134 & No & No & 155, 239, 240, 241, 242 \\ GX Cas (1994) & 0.09297 & 307 & No & No & 233, 243 \\ \phantom{GX Cas} (1999) & & & No & No & 244 \\ V725 Aql (1999) & 0.09909 & $\geq$1000 & Yes? & Yes? & 245, 246 \\ \phantom{V725 Aql} (1995) & & & Yes? & Yes? & 247 \\ MN Dra (2001--2003) & 0.1055 & 60 & No & No? & 248, 249 \\ NY Ser (1996+) & 0.1064 & 70--100 & No & No & 250 \\ TU Men (1980) & 0.1262 & 600? & Yes? & No? & 251, 252, 253, 254 \\ \hline \end{tabular} \end{center} \end{table*} \begin{table*} {\footnotesize {\bf References and remarks to table \ref{tab:regrowth}:} %% V485 Cen 1. \citet{ole97v485cen}; %% EI Psc 2. \citet{uem02j2329letter}; 3. \citet{uem02j2329}; 4. \citet{tho02j2329}; %% DI UMa 5. \citet{kat96diuma}; 6. \citet{fri99diuma}; %% V844 Her 7. \citet{kat00v844her}; 8. \citet{ant96newvar}; 9. \citet{tho02gwlibv844herdiuma}; %% V2176 Cyg 10. \citet{nov01v2176cyg}; %% V592 Her 11. \citet{kat02v592her}; 12. \citet{due98v592her}; 13. \citet{ric68v592her}; 14. \citet{ric92wzsgedip}; %% UW Tri 15. \citet{kat01uwtri}; %% LL And 16. \citet{how96lland}; 17. T. Kato et al., in preparation; %% WZ Sge 18. \citet{ish02wzsgeletter}; 19. \citet{pat02wzsge}; 20. R. Ishioka et al., in preparation; %% AL Com 21. \citet{pyc95alcom}; 22. \citet{pat96alcom}; 23. \citet{nog97alcom}; 24. \citet{how96alcom}; %% MM Hya 25. R. Ishioka et al., in preparation and the VSNET observations (1997--2001); %% PU CMa 26. T. Kato et al., vsnet-campaign-dn 3708 and VSNET observations; 27. \citet{kat03v877arakktelpucma}; 28. \citet{tho03kxaqlftcampucmav660herdmlyr}; %% HV Vir 29. \citet{lei94hvvir}; 30. \citet{kat01hvvir}; 31. \citet{ish03hvvir}; %% SW UMa 32. \citet{sem97swuma}; 33. \citet{nog98swuma}; 34. \citet{how95swumabcumatvcrv}; 35. K. Tanabe et al., in preparation; %% V1141 Aql 36. \citet{ole03v1141aql}; 37. VSNET observations; %% RZ LMi 38. \citet{nog95rzlmi}; 39. \citet{rob95eruma}; %% WX Cet 40. \citet{kat01wxcet}; 41. \citet{kat95wxcet}; 42. \citet{odo91wzsge}; %% KV Dra 43. M. Uemura et al., vsnet-campaign-dn 2802, 2820; 44. VSNET observations; 45. \citet{nog00kvdra}; 46. \citet{van00kvdra}; %% T Leo 47. \citet{lem93tleo}; 48. \citet{kat97tleo}; 49. \citet{how99tleo}; %% EG Cnc 50. \citet{kat97egcnc}; 51. \citet{mat98egcncqui}; 52. \citet{pat98egcnc}; %% RX Vol 53. T. Kato et al., vsnet-campaign-dn 3637,3644; %% MM Sco 54. \citet{kat03nsv10934mmscoabnorcal86}; %% V1028 Cyg 55. \citet{bab00v1028cyg}; %% UZ Boo 56. \citet{kuu96TOAD}; 57. \citet{ric92wzsgedip}; 58. \citet{bai79wzsge}; %% V1040 Cen 59. B. Monard, private communication, cf. vsnet-alert 7269; 60. VSNET observations; %% AQ Eri 61. \citet{kat91aqeri}; %% CI UMa 62. \citet{nog97ciuma}; 63. vsnet-campaign-dn 3588; %% XZ Eri 64. \citet{uem03xzeri}; 65. \citet{wou01v359cenxzeriyytel}; %% GO Com 66. Superhump period variable (e.g. vsnet-campaign-dn 3768). Mean superhump period given; %% V402 And 67. T. Kato et al., vsnet-campaign-dn 170; 68. \citet{ant98v1008herv402andv369peg}; 69. VSNET observations; %% CG CMa 70. \citet{kat99cgcma}; 71. \citet{due99cgcma}; %% V436 Cen 72. \citet{sem80v436cen}; 73. \citet{war75v436cen}; %% V1159 Ori 74. \citet{pat95v1159ori}; 75. \citet{nog95v1159ori}; 76. \citet{szk99v1159ori}; 77. \citet{kat01v1159ori}; %% V2051 Oph 78. \citet{kiy1998v2051oph}; 79. \citet{kat01v2051ophiyuma}; %% VY Aqr 80. \citet{pat93vyaqr}; %% BC UMa 81. VSNET Collaboration data; %% HO Del 82. this paper; %% OY Car 83. \citet{sch86oycar}; 84. \citet{krz85oycarsuper}; 85. \citet{nay87oycar}; %% EK TrA 86. \citet{has85ektra}; %% J1131 87. M. Uemura et al., vsnet-alert 7231; 88. T. Kato and M. Uemura, vsnet-campaign-dn 3540; %% TV Crv 89. \citet{how96tvcrv}; 90. R. Ishioka et al., in preparation; %% ER UMa 91. \citet{kat95eruma}; 92. \citet{kat03erumaSH}; %% AQ CMi 93. J. Patterson, vsnet-alert 327; 94. D. Nogami, vsnet-alert 328; 95. VSNET observations; %% UV Per 96. VSNET Collaboration data; 97. \citet{uda92uvper}; %% CT Hya 98. \citet{kat99cthya}; 99. \citet{nog96cthya}; 100. D. Nogami et al., in preparation; %% IX Dra 101. \citet{ish01ixdra}; 102. \citet{klo95exdraixdra}; %% DM Lyr 103. \citet{nog03dmlyr}; %% AK Cnc 104. \citet{men96akcnc}; 105. \citet{kat94akcnc}; %% SS UMi 106. \citet{kat02v344lyr}; 107. \citet{kat98ssumi}; 108. \citet{kat00ssumi}; %% SX LMi 109. \citet{nog97sxlmi}; 110. \citet{wag98sxlmi}; 111. \citet{kat01sxlmi}; %% V701 Tau 112. T. Kato et al., in preparation; %% V550 Cyg 113. H. Iwamatsu et al., cf. vsnet-alert 5200; other periods are possible; %% V1504 Cyg 114. \citet{pav02v1504cyg}; 115. \citet{nog97v1504cyg}; %% KS UMa 116. \citet{pat01SH}; 117. \citet{ole03ksuma}; 118. VSNET observations; %% RZ Sge 119. \citet{sem97rzsge}; 120. \citet{kat96rzsge}; 121. \citet{bon82rzsge}; %% V1208 Tau 122. T. Kato et al., vsnet-alert 4165 and $<$http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/DNe/j0459.html$>$; %% IR Gem 123. \citet{sha84irgem}; 124. \citet{kat01irgem}; %% TY Psc 125. \citet{kun01typsc}; 126. VSNET observations; %% CY UMa 127. \citet{kat99cyuma}; 128. \citet{har95cyuma}; %% PU Per 129. \citet{kat99puper}; %% FO And 130. \citet{kat95foand}; %% VW CrB 131. \citet{nov97vwcrb}; 132. \citet{ant96vwcrb}; 133. VSNET observations; %% KV And 134. \citet{kat95kvand}; 135. K. Tanabe et al., in preparation; %% AW Sge 136. G. Masi et al., in preparation; other one-day alias is possible; %% NSV 10934 %% V368 Peg 137. J. Pietz, vsnet-alert 3317; 138. \citet{ant98v368pegftcamv367pegv2209cyg}; 139. VSNET Collaboration data; %% OU Vir 140. T. Kato et al., vsnet-campaign-dn 3656 and VSNET observations; 141. \citet{van00ouvir}; 142. \citet{szk02SDSSCVs}; %% CC Cnc 143. \citet{kat02cccnc}; 144. \citet{kat97cccnc}; %% DM Dra 145. \citet{kat02dmdra}; 146. \citet{ste82dmdra}; 147. T. Kato et al., vsnet-campaign-dn 3542; %% VZ Pyx 148. \citet{kat97vzpyx}; 149. \citet{kiy99vzpyx}; %% IY UMa 150. \citet{uem00iyuma}; 151. \citet{pat00iyuma}; 152. M. Uemura et al., in preparation; %% AY Lyr 153. \citet{uda88aylyr}; 154. \citet{szy87aylyr}; 155. \citet{pat79SH}; %% V1251 Cyg 156. \citet{kat95v1251cyg}; %% HT Cas 157. \citet{zha86htcas}; 158. \citet{wen85htcas}; 159. \citet{wen87htcas}; %% QY Per 160. \citet{kat00qyperiauc}; see also $<$http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/DNe/qyper.html$>$; %% QW Ser 161. D. Nogami et al., in prepartion; 162. \citet{kat99qwser}; 163. VSNET observations; %% BE Oct 164. J. Kemp and J. Patterson, vsnet-obs 3461; %% VW Hyi 165. \citet{vog74vwhyi}; 166. \citet{hae79lateSH}; 167. \citet{sch80vwhyi}; 168. \citet{lil96vwhyi}; %% WX Hyi 169. \citet{bai79wxhyiv436cen}; %% Z Cha 170. \citet{war88zcha}; 171. \citet{war74zcha}; 172. \citet{bai79zcha}; 173. \citet{vog82zcha}; 174. \citet{kuu91zcha}; %% TT Boo 175. \citet{kat95ttboo}; %% WY Tri 176. \citet{van01wytri}; 177. M. Uemura et al., vsnet-campaign-dn 376; %% RZ Leo 178. \citet{ish01rzleo}; affected by beat phenomenon?; %% V630 Cyg 179. \citet{nog01v630cyg}; %% SU UMa 180. \citet{uda90suuma}; %% V1113 Cyg 181. \citet{kat96v1113cyg}; 182. \citet{kat01v1113cyg}; %% J1730 183. M. Uemura et al., vsnet-campaign-dn 1786; 184. T. Vanmunster et al., vsnet-campaign-dn 1792; 185. VSNET observations; %% AW Gem 186. \citet{kat96awgem}; %% CU Vel 187. N. Vogt (1981) Habilitation Thesis, Bochum University, see \citet{men96cuvel}; 188. Superhump periods may strongly vary. T. Kato et al. (vsnet-campaign-dn 3136) gives a mean period of 0.08085(3) d from the 2002 December observation; %% DH Aql 189. M. Uemura, vsnet-campaign-dn 2699 and VSNET Collaboration data; 190. \citet{nog95dhaql}; %% PV Per 191. \citet{van97pvper}; 192. VSNET observations; %% HS Vir 193. \citet{kat98hsvir}; 194. \citet{kat01hsvir}; %% V359 Cen 195. \citet{kat02v359cen}; %% V660 Her 196. J. Pietz, vsnet-alert 3162; the correct alias selected based on the orbital period in \citet{tho03kxaqlftcampucmav660herdmlyr}; 197. \citet{spo98alcomv544herv660herv516cygdxand}; 198. VSNET observations; %% V503 Cyg 199. \citet{har95v503cyg}; 200. \citet{spo00v503cyg}; 201. \citet{kat02v503cyg}; %% BR Lup 202. \citet{odo87brlup}; 203. \citet{men98brlup}; 204. vsnet-campaign-dn 3584, T. Kato et al., in preparation; %% NSV 09923 205. T. Kato et al., vsnet-campaign-dn 3821; %% RX Cha 206. \citet{kat01rxcha}; 207. VSNET observations; %% V877 Ara %% AB Nor %% CP Dra 208. R. Ishioka et al., in preparation, cf. vsnet-campaign-dn 556; 209. \citet{kol79cpdraciuma}; %% V369 Peg 210. \citet{kat01v369peg}; %% TU Crt 211. \citet{men98tucrt}; 212. R. Ishioka et al., in preparation; 213. \citet{wen93tucrt}; 214. \citet{haz93tucrt}; %% HV Aur 215. \citet{nog95hvaur}; 216. T. Kato et al., vsnet-campaign-dn 3061; %% V589 Her 217. T. Vanmunster, vsnet-alert 7279; other possible period 0.0950 d; %% EF Peg 218. \citet{kat02efpeg}; 219. \citet{how93efpeg}; 220. VSNET observations; 221. K. Matsumoto et al., in preparation; %% TY PsA 222. \citet{bar82typsa}; 223. \citet{war89typsa}; 224. VSNET observations; %% BF Ara 225. \citet{kat03bfara}; 226. \citet{kat01bfara}; 227. \citet{bru83bfara}; %% KK Tel %% V452 Cas 228. T. Vanmunster and B. Fried, vsnet-alert 3707; 229. M. Uemura et al., vsnet-alert 3711; %% DV UMa 230. \citet{pat00dvuma}; 231. M. Uemura et al., in preparation; see also $<$http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/DNe/dvuma9912.html$>$; 232. \citet{nog01dvuma}; %% V419 Lyr 233. \citet{nog98gxcasv419lyr}; 234. M. Uemura et al., in preparation; see also vsnet-alert 3401; %% UV Gem 235. T. Vanmunster, vsnet-alert 7284; 236. \citet{kat01uvgemfsandaspsc}; 237. VSNET observations; %% V344 Lyr 238. \citet{kat93v344lyr}; %% YZ Cnc 239. \citet{vanpar94suumayzcnc}; 240. \citet{kat01yzcnc}; 241. \citet{mof74yzcnc}; 242. \citet{szk84AAVSO}; %% GX Cas 243. VSNET observations; 244. M. Uemura et al., in preparation; %% V725 Aql 245. \citet{uem01v725aql}; 246. \citet{haz96v725aql}; 247. \citet{nog95v725aql}; the terminal portion of the superoutburst was observed; a large-amplitude superhump-like signal likely indicated a regrowth of the superhumps; %% MN Dra 248. \citet{ant02var73dra}; 249. \citet{nog03var73dra}; the superhump period listed in the table is an average of the two different superoutbursts in \citet{nog03var73dra}; %% NY Ser 250. \citet{nog98nyser}; %% TU Men 251. \citet{StolzSchoembs}; 252. \citet{sto81tumen1}; 253. \citet{sto81tumen2}; 254. VSNET observations. Outbursts with intermediate lengths are known; a typical recurrence time of long outbursts is given. } \end{table*} \subsection{Distribution of Superhump Periods} Since table \ref{tab:regrowth} presents the most up-to-date and complete statististics of SU UMa-type dwarf novae, we first reexamined the basic statistics of SU UMa-type dwarf novae. Figure \ref{fig:pshhis} shows a distribution of the superhump periods ($P_{\rm SH}$) based on this new material. This figure supersedes the previously published statistics (e.g. Fig. 6 of \cite{kol99CVperiodminimum}). Even with the new samples, a discrepancy still exists between the observed and theoretically predicted distributions. This new statistics confirms the claimed deficiency of the shortest period systems (\cite{kol99CVperiodminimum}; \cite{bar03CVminimumperiod}). \begin{figure} \begin{center} % \FigureFile(88mm,60mm){pshhis.eps} \FigureFile(88mm,60mm){fig8.eps} \end{center} \caption{Distribution of superhump periods ($P_{\rm SH}$) in SU UMa-type dwarf novae. The data are taken from table \ref{tab:regrowth}.} \label{fig:pshhis} \end{figure} \subsection{Distribution of Supercycles} We reexamined the distribution of supercycles, whose importance has been discussed by a number of authors (\cite{hel01eruma}; \cite{nog98CVevolution}; \cite{war95suuma}). From the standpoint of the disk-instability theory, this distribution is considered to reflect the distribution of mass-transfer rates \citep{ich94cycle}. Figure \ref{fig:his} shows the resultant distribution of supercycle lengths in SU UMa-type dwarf novae. When there are different possibilities of supercycle lengths are present, we chose the most likely period. When a range of supercycle lengths is presented, we took a logarithmic mean of the extreme values. When only a lower limit of supercycle lengths is available, we adopted the lower limit as a representative of the supercycle lengths. This figure supersedes Fig. 1 in \citet{hel01eruma}, who used \cite{war95suuma}. The increase of the number of samples since 1995 is remarkable. Most of SU UMa-type dwarf novae have 2.0$< \log T_s <$3.0. The objects below $\log T_s <$1.8 are ER UMa stars, except for Var 73 Dra ($\log T_s \sim$1.78: \citet{nog03var73dra}), whose relation with the ER UMa stars is still unclear. Despite intensive efforts to search for transitional objects between ER UMa stars and usual SU UMa stars, any attempt has not yet been successful \citep{kat03bfara}. Many of the objects with $\log T_s >$3.5 are WZ Sge-type stars \citep{kat01hvvir}. Although there have been a suggestion that SU UMa-type dwarf novae and WZ Sge-type stars comprise a continuous entity (e.g. \cite{pat96alcom}), the most up-to-data seem to illustrate a gap around $\log T_s \sim$3.5. The reality of the gap needs to be verified by future studies. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){his.eps} \FigureFile(88mm,60mm){fig9.eps} \end{center} \caption{Distribution of supercycle lengths ($T_s$) in SU UMa-type dwarf novae. The data are taken from table \ref{tab:regrowth}.} \label{fig:his} \end{figure} Figure \ref{fig:pshts} shows the relation between $P_{\rm SH}$ and $T_s$. Although there is a tendency of a slight increase of typical $T_s$ toward shorter $P_{\rm SH}$, the new statistics revealed that many of SU UMa-type dwarf novae have a fairly typical value of $\log T_s \sim$2.5 ($T_s \sim$300 d) regardless of the superhump period (or orbital period). There is, however, a wide-spread distribution of $T_s$ around the period 0.055$\leq P_{\rm SH} \leq$0.065 d. The systems with short supercycle lengths ($\log T_s \leq$1.8) are ER UMa stars, and those with long supercycle lengths ($\log T_s \geq$3.6) are WZ Sge-type stars. Although a concentration of these objects around the shortest $P_{\rm SH}$ has been widely discussed (cf. \cite{nog98CVevolution}; \cite{war98CVreviewWyo}; \cite{hel01eruma}), the present study more clearly illustrated the segregation between these populations. A previously proposed picture of a continuous entity between usual SU UMa-type dwarf novae and WZ Sge stars (cf. \cite{nog96cthya}; \cite{bab00v1028cyg}) seems to have become less concrete. There are also a small number of objects with long $T_s$ and long $P_{\rm SH}$, whose existence was not clear in the past studies. One of these objects (RZ Leo) has been studied thoroughly (\cite{men02CVBD}; \cite{ish01rzleo}), and has been shown to have a normal lower main-sequence secondary, rather than a brown dwarf. The expected low mass-transfer rate in such a system should therefore be understood as a result of a wide variety of systems even below the period gap. On the other hand, extremely short $T_s$ systems seem to be concentrated in the short $P_{\rm SH}$ range, supporting the earlier finding. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){pshts.eps} \FigureFile(88mm,60mm){fig10.eps} \end{center} \caption{Relation between $P_{\rm SH}$ and $T_s$. The data are taken from table \ref{tab:regrowth}. The arrows represent lower limits of $T_s$'s.} \label{fig:pshts} \end{figure} \subsection{Brightening near Termination of Superoutburst Plateau} We first inspected the objects with multiple superoutburst observations in order to check the possible variation of the brightening feature near the termination of a superoutburst plateau. Table \ref{tab:brightening} shows the summary. This result indicates that whether or not there is a brightening feature near the termination of a superoutburst plateau is primarily dependent on the object, rather than individual superoutbursts. DV UMa and QW Ser are the only examples among the well-observed objects which probably showed different types of superoutbursts. These objects apparently need further full-superoutburst observations on every possible occasions. \begin{table} \caption{Brightening near Termination of Superoutburst Plateau in Different Superoutbursts.} \label{tab:brightening} \begin{center} \vspace{10pt} \begin{tabular}{cccc} \hline\hline Object & $P_{\rm SH}$ & \multicolumn{2}{c}{Number of superoutbursts} \\ & & \multicolumn{2}{c}{with/without brightening} \\ & & Yes & No \\ \hline V592 Her & 0.056498 & 2 & 0 \\ WX Cet & 0.05949 & 3 & 0 \\ KV Dra & 0.060005 & 2 & 0 \\ OY Car & 0.064544 & 2 & 0 \\ TV Crv & 0.0650 & 2 & 0 \\ CT Hya & 0.06643 & 0 & 4 \\ DM Lyr & 0.0673 & 0 & 2 \\ RZ Sge & 0.07042 & 0 & 3 \\ CY UMa & 0.07210 & 0 & 2 \\ KV And & 0.07434 & 0 & 2 \\ CC Cnc & 0.075518 & 0 & 2 \\ IY UMa & 0.07588 & 0 & 2 \\ AY Lyr & 0.07597 & 0 & 2 \\ QW Ser & 0.07709 & 1 & 1 \\ VW Hyi & 0.07714 & 0 & 4 \\ Z Cha & 0.07740 & 0 & 2 \\ EF Peg & 0.08705 & 0 & 2 \\ DV UMa & 0.08869 & 1 & 1 \\ GX Cas & 0.09297 & 0 & 2 \\ V725 Aql & 0.09909 & 2 & 0 \\ \hline \end{tabular} \end{center} \end{table} Figure \ref{fig:bright} shows a distribution of objects with or without brightening near the termination of the superoutbursts. The open and filled circles represent no brightening and with brightening (No/No? and Yes/Yes? in table \ref{tab:regrowth}), respectively, including suspicious cases. (DV UMa and QW Ser were included as systems ``with brightening''). There is a strong concentration of systems with brightening in short $P_{\rm SH}$ and long $T_s$ systems, although WZ Sge-type stars usually do not show this type of brightening. Several long-$P_{\rm SH}$ systems showing brightening are clearly confined to the long $T_s$ region. The location of HO Del (with brightening) is consistent with the general tendency. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){bright.eps} \FigureFile(88mm,60mm){fig11.eps} \end{center} \caption{Brightening near the termination of the superoutbursts. The open and filled circles represent no brightening and with brightening (No/No? and Yes/Yes? in table \ref{tab:regrowth}), respectively, including suspicious cases. The arrows represent lower limits of $T_s$. The location of HO Del (with brightening) is marked with a cross.} \label{fig:bright} \end{figure} \subsection{Regrowth of Superhumps} We inspected the objects with multiple superoutburst observations in order to check the possible variation of the superhump regrowth near the termination of a superoutburst plateau. Table \ref{tab:regrowthind} shows the summary. The symbols are as in table \ref{tab:brightening}. As in brightening feature near the termination of a superoutburst plateau, the existence of the superhump regrowth is primarily dependent on the object, rather than individual superoutbursts. RZ Sge is a possible exception which showed both types of superoutbursts. \begin{table} \caption{Regrowth of Superhumps in Different Superoutbursts.} \label{tab:regrowthind} \begin{center} \vspace{10pt} \begin{tabular}{cccc} \hline\hline Object & $P_{\rm SH}$ & \multicolumn{2}{c}{Number of superoutbursts} \\ & & \multicolumn{2}{c}{with/without regrowth} \\ & & Yes & No \\ \hline SW UMa & 0.05833 & 2 & 0 \\ WX Cet & 0.05949 & 2 & 0 \\ TV Crv & 0.0650 & 2 & 0 \\ CT Hya & 0.06643 & 0 & 3 \\ RZ Sge & 0.07042 & 1 & 2 \\ CY UMa & 0.07210 & 0 & 2 \\ KV And & 0.07434 & 0 & 2 \\ IY UMa & 0.07588 & 0 & 2 \\ AY Lyr & 0.07597 & 0 & 2 \\ VW Hyi & 0.07714 & 0 & 4 \\ Z Cha & 0.07740 & 0 & 2 \\ EF Peg & 0.08705 & 0 & 2 \\ GX Cas & 0.09297 & 0 & 2 \\ V725 Aql & 0.09909 & 2 & 0 \\ \hline \end{tabular} \end{center} \end{table} Figure \ref{fig:growth} shows distribution of objects with or without superhump regrowth near the termination of the superoutbursts. The symbols are the same as in figure \ref{fig:bright}. A stronger preference of short-$P_{\rm SH}$ systems, than in figure \ref{fig:bright}, is apparent, although the location of the objects with superhump regrowth nearly overlaps the location of the objects with brightening. This figure suggests that the appearance of superhump regrowth and brightening near the termination of the superoutbursts is phenomenologically coupled. This statistical finding may comprise another aspect of positive correlations between brightening and superhump regrowth, which was claimed by \citet{bab00v1028cyg} based on the analysis of the 1995 superoutburst of V1028 Cyg. The location of HO Del is unusual in its apparent absence of the superhump regrowth. This deviation from the general trend may be related to a rather low ($\sim$5.0 mag) outburst amplitude of HO Del for a long $T_s$ object. If this is the case, the conditions necessary to manifest the unusual large-amplitude outbursts in some rarely outbursting SU UMa-type dwarf novae, may be somehow responsible for producing the late-time regrowth the superhumps. We do not discuss whether this argument can be observationally extended to the most extreme WZ Sge-type dwarf novae, which may be a natural extension of so-called TOADs, while recent theoretical interpretations seem to prefer a different entity (\cite{osa02wzsgehump}; \cite{osa03DNoutburst}), in which a 1:2 resonance is claimed to be essential for the manifestation of their unusual outbursts. The exclusion of WZ Sge-type dwarf novae from figure \ref{fig:growth} may be an artificial result our examination of these phenomena (regrowth of superhumps and brightening) restricted to pre-``dip'' observations of WZ Sge-type superoutbursts. If we consider that the rebrightening stage of WZ Sge-type superoutbursts actually corresponds to the late stage of SU UMa-type superoutbursts discussed in this study, it may be possible both WZ Sge-type rebrightenings and late stage brightening (and possibly regrowth of superhumps) have the same underlying mechanism. We leave this an observational open question, partly because individual WZ Sge-type rebrightenings show a wide variety [at least some of which bear more resemblance to normal outbursts (e.g. \cite{kat97egcnc}; \cite{pat98egcnc}), while some of them even look like a double superoutburst \citep{nog97alcom}], and partly because observations are insufficient in most WZ Sge-type stars to judge whether there was a regrowth of superhumps during such a stage. Although the original TOAD classification has been shown to represent a rather loosely defined class of objects, the presently discussed features may provide a better observational distinction for SU UMa-type dwarf novae with unusual characteristics. \begin{figure} \begin{center} % \FigureFile(88mm,60mm){growth.eps} \FigureFile(88mm,60mm){fig12.eps} \end{center} \caption{Regrowth of superhumps near the termination of the superoutbursts. The open and filled circles represent no regrowth and with regrowth (No/No? and Yes/Yes? in table \ref{tab:regrowth}), respectively, including suspicious cases. The arrows represent lower limits of $T_s$. The location of HO Del (without regrowth) is marked with a cross.} \label{fig:growth} \end{figure} \section{Summary} We photometrically observed the 1994, 1996 and 2001 outbursts of HO Del. From the detection of secure superhumps, HO Del is confirmed to be an SU UMa-type dwarf nova with a superhump period of 0.06453(6) d. Based on the recent observations and the past records, the outbursts of HO Del are found to be relatively rare, with the shortest intervals of superoutbursts being $\sim$740 d. We also performed a literature survey of SU UMa-type dwarf novae, and presented a new set of basic statistics. This new statistics revealed that many of SU UMa-type dwarf novae have a fairly typical value of supercycle lengths of $\sim$300 d regardless of the superhump period. There is, however, a wide-spread distribution of $T_s$ around the period 0.055$\leq P_{\rm SH} \leq$0.065 d. A previously proposed picture of a continuous entity between usual SU UMa-type dwarf novae and WZ Sge stars seems to have become less concrete. The SU UMa-type dwarf novae with a brightening trend or with a regrowth of superhumps near the termination of a superoutburst are found to be rather tightly confined in a small region on the (superhump period--supercycle length) plane. These characteristics seem to provide better criteria for a small, rather unusual population of SU UMa-type dwarf novae, which likely correspond to, and would better define, the objects previously selected by outburst amplitudes (Tremendous Outburst Amplitude Dwarf Novae). HO Del is rather unusual in that it is located in this region while it did not show regrowth of superhumps. \vskip 3mm The authors are grateful to many observers who reported observations to VSNET. We are grateful to M. Moriyama, M. Reszelski, and J. Pietz for their prompt announcements of the outburst detections of HO Del. We are grateful to G. Masi, J. Pietz, B. Monard for providing their observations of SU UMa-type dwarf novae prior to publication. This work is partly supported by a grant-in-aid [13640239, 15037205 (TK), 14740131 (HY)] from the Japanese Ministry of Education, Culture, Sports, Science and Technology. This research has made use of the Digitized Sky Survey producted by STScI, the ESO Skycat tool, and the VizieR catalogue access tool. \begin{thebibliography}{} \bibitem[Abbott et~al.(1992)]{abb92alcomcperi} Abbott, T. M.~C., Robinson, E.~L., Hill, G.~J., \& Haswell, C.~A.\ 1992, \apj, 399, 680 \bibitem[Angelini, Verbunt(1989)]{ang89DNoutburstmagnetic} Angelini, L., \& Verbunt, F.\ 1989, \mnras, 238, 697 \bibitem[Antipin(1996a)]{ant96vwcrb} Antipin, S.~V.\ 1996a, Inf. Bull. Variable Stars, 4343 \bibitem[Antipin(1996b)]{ant96newvar} Antipin, S.~V.\ 1996b, Inf. Bull. Variable Stars, 4360 \bibitem[Antipin(1998a)]{ant98v1008herv402andv369peg} Antipin, S.~V.\ 1998a, Inf. Bull. Variable Stars, 4578 \bibitem[Antipin(1998b)]{ant98v368pegftcamv367pegv2209cyg} Antipin, S.~V.\ 1998b, Inf. Bull. Variable Stars, 4673 \bibitem[Antipin, Pavlenko(2002)]{ant02var73dra} Antipin, S.~V., \& Pavlenko, E.~P.\ 2002, \aap, 391, 565 \bibitem[Baba et~al.(2000)]{bab00v1028cyg} Baba, H., Kato, T., Nogami, D., Hirata, R., Matsumoto, K., \& Sadakane, K.\ 2000, \pasj, 52, 429 \bibitem[Bailey(1979a)]{bai79zcha} Bailey, J.\ 1979a, \mnras, 187, 645 \bibitem[Bailey(1979b)]{bai79wxhyiv436cen} Bailey, J.\ 1979b, \mnras, 188, 681 \bibitem[Bailey(1979c)]{bai79wzsge} Bailey, J.\ 1979c, \mnras, 189, L41 \bibitem[Barker, Kolb(2003)]{bar03CVminimumperiod} Barker, J., \& Kolb, U.\ 2003, \mnras, 340, 623 \bibitem[Barwig et~al.(1982)]{bar82typsa} Barwig, H., Kudritzki, R.~P., Vogt, N., \& Hunger, K.\ 1982, \aap, 114, L11 \bibitem[Bond et~al.(1982)]{bon82rzsge} Bond, H.~E., Kemper, E., \& Mattei, J.~A.\ 1982, \apjl, 260, L79 \bibitem[Bruch(1983)]{bru83bfara} Bruch, A.\ 1983, Inf. Bull. Variable Stars, 2286 \bibitem[Buat-M\'{e}nard, Hameury(2002)]{bua02suumamodel} Buat-M\'{e}nard, V., \& Hameury, J.-M.\ 2002, \aap, 386, 891 \bibitem[Busch et~al.(1979)]{bus79VS17} Busch, H., H\"{a}ussler, K., \& Splittgerber, E.\ 1979, Ver\"{o}ff. Sternw. Sonneberg, 9, 125 \bibitem[Cannizzo(1998)]{can98DNabsmag} Cannizzo, J.~K.\ 1998, \apj, 493, 426 \bibitem[Ciardi et~al.(1998)]{cia98CVIR} Ciardi, D.~R., Howell, S.~B., Hauschildt, P.~H., \& Allard, F.\ 1998, \apj, 504, 450 \bibitem[Downes, Margon(1981)]{dow81wzsge} Downes, R.~A., \& Margon, B.\ 1981, \mnras, 197, L35 \bibitem[Downes, Shara(1993)]{DownesCVatlas1} Downes, R.~A., \& Shara, M.~M.\ 1993, \pasp, 105, 127 \bibitem[Duerbeck, Mennickent(1998)]{due98v592her} Duerbeck, H.~W., \& Mennickent, R.~E.\ 1998, Inf. Bull. Variable Stars, 4637 \bibitem[Duerbeck et~al.(1999)]{due99cgcma} Duerbeck, H.~W., Schmeer, P., Knapen, J.~H., \& Pollacco, D.\ 1999, Inf. Bull. Variable Stars, 4759 \bibitem[Fernie(1989)]{fer89error} Fernie, J.~D.\ 1989, \pasp, 101, 225 \bibitem[Fried et~al.(1999)]{fri99diuma} Fried, R.~E., Kemp, J., Patterson, J., Skillman, D.~R., Retter, A., Leibowitz, E., \& Pavlenko, E.\ 1999, \pasp, 111, 1275 \bibitem[Groot et~al.(2001)]{gro01cperi} Groot, P.~J., Nelemans, G., Steeghs, D., \& Marsh, T.~R.\ 2001, \apjl, 558, L123 \bibitem[Haefner et~al.(1979)]{hae79lateSH} Haefner, R., Schoembs, R., \& Vogt, N.\ 1979, \aap, 77, 7 \bibitem[Harvey et~al.(1995)]{har95v503cyg} Harvey, D., Skillman, D.~R., Patterson, J., \& Ringwald, F.~A.\ 1995, \pasp, 107, 551 \bibitem[Harvey, Patterson(1995)]{har95cyuma} Harvey, D.~A., \& Patterson, J.\ 1995, \pasp, 107, 1055 \bibitem[Hassall(1985)]{has85ektra} Hassall, B. J.~M.\ 1985, \mnras, 216, 335 \bibitem[Hazen(1993)]{haz93tucrt} Hazen, M.~L.\ 1993, Inf. Bull. Variable Stars, 3888 \bibitem[Hazen(1996)]{haz96v725aql} Hazen, M.~L.\ 1996, J. American Assoc. Variable Star Obs., 24, 14 \bibitem[Hellier(2001)]{hel01eruma} Hellier, C.\ 2001, \pasp, 113, 469 \bibitem[Hoffmeister(1967)]{hof67an29043} Hoffmeister, C.\ 1967, Astron. Nachr., 290, 43 \bibitem[Howell, Ciardi(2001)]{how01llandeferi} Howell, S.~B., \& Ciardi, D.~R.\ 2001, \apjl, 550, L57 \bibitem[Howell et~al.(1999)]{how99tleo} Howell, S.~B., Ciardi, D.~R., Szkody, P., van Paradijs, J., Kuulkers, E., Cash, J., Sirk, M., \& Long, K.~S.\ 1999, \pasp, 111, 342 \bibitem[Howell et~al.(1996a)]{how96alcom} Howell, S.~B., DeYoung, J.~A., Mattei, J.~A., Foster, G., Szkody, P., Cannizzo, J.~K., Walker, G., \& Fierce, E.\ 1996a, \aj, 111, 2367 \bibitem[Howell, Hurst(1996)]{how96lland} Howell, S.~B., \& Hurst, G.~M.\ 1996, J. British Astron. Assoc., 106, 29 \bibitem[Howell et~al.(1997)]{how97periodminimum} Howell, S.~B., Rappaport, S., \& Politano, M.\ 1997, \mnras, 287, 929 \bibitem[Howell et~al.(1996b)]{how96tvcrv} Howell, S.~B., Reyes, A.~L., Ashley, R., Harrop-Allin, M.~K., \& Warner, B.\ 1996b, \mnras, 282, 623 \bibitem[Howell et~al.(1993)]{how93efpeg} Howell, S.~B., Schmidt, R., DeYoung, J.~A., Fried, R., Schmeer, P., \& Gritz, L.\ 1993, \pasp, 105, 579 \bibitem[Howell et~al.(1995a)]{how95TOAD} Howell, S.~B., Szkody, P., \& Cannizzo, J.~K.\ 1995a, \apj, 439, 337 \bibitem[Howell et~al.(1995b)]{how95swumabcumatvcrv} Howell, S.~B., Szkody, P., Sonneborn, G., Fried, R., Mattei, J., Oliversen, R.~J., Ingram, D., \& Hurst, G.~M.\ 1995b, \apj, 453, 454 \bibitem[Ichikawa, Osaki(1994)]{ich94cycle} Ichikawa, S., \& Osaki, Y.\ 1994, in Theory of Accretion Disks-2, ed. W.~J. Duschl, J. Frank, F. Meyer, E. Meyer-Hofmeister \& W.~M. Tscharnuter (Dordrecht: Kluwer Academic Publishers), ~169 \bibitem[Ishioka et~al.(2001a)]{ish01ixdra} Ishioka, R., Kato, T., Uemura, M., Iwamatsu, H., Matsumoto, K., Martin, B.~E., Billings, G.~W., \& Novak, R.\ 2001a, \pasj, 53, L51 \bibitem[Ishioka et~al.(2001b)]{ish01rzleo} Ishioka, R. {et~al.}\ 2001b, \pasj, 53, 905 \bibitem[Ishioka et~al.(2003)]{ish03hvvir} Ishioka, R. {et~al.}\ 2003, \pasj, 55, 683 \bibitem[Ishioka et~al.(2002)]{ish02wzsgeletter} Ishioka, R. {et~al.}\ 2002, \aap, 381, L41 \bibitem[Kato(1991)]{kat91aqeri} Kato, T.\ 1991, Inf. Bull. Variable Stars, 3671 \bibitem[Kato(1993)]{kat93v344lyr} Kato, T.\ 1993, \pasj, 45, L67 \bibitem[Kato(1994)]{kat94akcnc} Kato, T.\ 1994, Inf. Bull. Variable Stars, 4136 \bibitem[Kato(1995a)]{kat95v1251cyg} Kato, T.\ 1995a, Inf. Bull. Variable Stars, 4152 \bibitem[Kato(1995b)]{kat95kvand} Kato, T.\ 1995b, Inf. Bull. Variable Stars, 4239 \bibitem[Kato(1995c)]{kat95foand} Kato, T.\ 1995c, Inf. Bull. Variable Stars, 4242 \bibitem[Kato(1995d)]{kat95ttboo} Kato, T.\ 1995d, Inf. Bull. Variable Stars, 4243 \bibitem[Kato(1995e)]{kat95wxcet} Kato, T.\ 1995e, Inf. Bull. Variable Stars, 4256 \bibitem[Kato(1996a)]{kat96rzsge} Kato, T.\ 1996a, Inf. Bull. Variable Stars, 4369 \bibitem[Kato(1996b)]{kat96awgem} Kato, T.\ 1996b, \pasj, 48, 777 \bibitem[Kato(1997)]{kat97tleo} Kato, T.\ 1997, \pasj, 49, 583 \bibitem[Kato(1999)]{kat99var5} Kato, T.\ 1999, Inf. Bull. Variable Stars, 4789 \bibitem[Kato(2001a)]{kat01sxlmi} Kato, T.\ 2001a, Inf. Bull. Variable Stars, 5071 \bibitem[Kato(2001b)]{kat01yzcnc} Kato, T.\ 2001b, Inf. Bull. Variable Stars, 5104 \bibitem[Kato(2001c)]{kat01v1113cyg} Kato, T.\ 2001c, Inf. Bull. Variable Stars, 5110 \bibitem[Kato(2001d)]{kat01irgem} Kato, T.\ 2001d, Inf. Bull. Variable Stars, 5122 \bibitem[Kato(2001e)]{kat01v1159ori} Kato, T.\ 2001e, \pasj, 53, L17 \bibitem[Kato(2002)]{kat02efpeg} Kato, T.\ 2002, \pasj, 54, 87 \bibitem[Kato et~al.(2003a)]{kat03bfara} Kato, T., Bolt, G., Nelson, P., Monard, B., Stubbings, R., Pearce, A., Yamaoka, H., \& Richards, T.\ 2003a, \mnras, 341, 901 \bibitem[Kato et~al.(2001a)]{kat01rxcha} Kato, T., Garradd, G., Stubbings, R., Pearce, A., \& Nelson, P.\ 2001a, Inf. Bull. Variable Stars, 5117 \bibitem[Kato et~al.(2000a)]{kat00ssumi} Kato, T., Hanson, G., Poyner, G., Muyllaert, E., Reszelski, M., \& Dubovsky, P.~A.\ 2000a, Inf. Bull. Variable Stars, 4932 \bibitem[Kato et~al.(2002a)]{kat02v503cyg} Kato, T., Ishioka, R., \& Uemura, M.\ 2002a, \pasj, 54, 1029 \bibitem[Kato et~al.(1999a)]{kat99cthya} Kato, T., Kiyota, S., Nov\'{a}k, R., \& Matsumoto, K.\ 1999a, Inf. Bull. Variable Stars, 4794 \bibitem[Kato, Kunjaya(1995)]{kat95eruma} Kato, T., \& Kunjaya, C.\ 1995, \pasj, 47, 163 \bibitem[Kato et~al.(1998a)]{kat98ssumi} Kato, T., Lipkin, Y., Retter, A., \& Leibowitz, E.\ 1998a, Inf. Bull. Variable Stars, 4602 \bibitem[Kato, Matsumoto(1999a)]{kat99cyuma} Kato, T., \& Matsumoto, K.\ 1999a, Inf. Bull. Variable Stars, 4763 \bibitem[Kato, Matsumoto(1999b)]{kat99puper} Kato, T., \& Matsumoto, K.\ 1999b, Inf. Bull. Variable Stars, 4765 \bibitem[Kato et~al.(2001b)]{kat01wxcet} Kato, T., Matsumoto, K., Nogami, D., Morikawa, K., \& Kiyota, S.\ 2001b, \pasj, 53, 893 \bibitem[Kato et~al.(1999b)]{kat99cgcma} Kato, T., Matsumoto, K., \& Stubbings, R.\ 1999b, Inf. Bull. Variable Stars, 4760 \bibitem[Kato et~al.(2003b)]{kat03nsv10934mmscoabnorcal86} Kato, T. {et~al.}\ 2003b, preprint \bibitem[Kato, Nogami(1995)]{kat95puper} Kato, T., \& Nogami, D.\ 1995, Inf. Bull. Variable Stars, 4260 \bibitem[Kato, Nogami(1997a)]{kat97vzpyx} Kato, T., \& Nogami, D.\ 1997a, \pasj, 49, 481 \bibitem[Kato, Nogami(1997b)]{kat97cccnc} Kato, T., \& Nogami, D.\ 1997b, \pasj, 49, 341 \bibitem[Kato et~al.(1996a)]{kat96diuma} Kato, T., Nogami, D., \& Baba, H.\ 1996a, \pasj, 48, L93 \bibitem[Kato et~al.(2000b)]{kat00crboo} Kato, T., Nogami, D., Baba, H., Hanson, G., \& Poyner, G.\ 2000b, \mnras, 315, 140 \bibitem[Kato et~al.(1999c)]{kat99erumareview} Kato, T., Nogami, D., Baba, H., Masuda, S., Matsumoto, K., \& Kunjaya, C.\ 1999c, in Disk Instabilities in Close Binary Systems, ed. S. Mineshige \& J.~C. Wheeler (Tokyo: Universal Academy Press), ~45 \bibitem[Kato et~al.(1998b)]{kat98super} Kato, T., Nogami, D., Baba, H., \& Matsumoto, K.\ 1998b, in ASP Conf. Ser. 137, Wild Stars in the Old West, ed. S. Howell, E. Kuulkers \& C. Woodward (San Francisco: ASP), ~9 \bibitem[Kato et~al.(2001c)]{kat01uwtri} Kato, T., Nogami, D., Lockley, J.~J., \& Somers, M.\ 2001c, Inf. Bull. Variable Stars, 5116 \bibitem[Kato et~al.(2002b)]{kat03erumaSH} Kato, T., Nogami, D., \& Masuda, S.\ 2002b, \pasj, 55, L7 \bibitem[Kato et~al.(1998c)]{kat98hsvir} Kato, T., Nogami, D., Masuda, S., \& Baba, H.\ 1998c, \pasp, 110, 1400 \bibitem[Kato et~al.(1996b)]{kat96v1113cyg} Kato, T., Nogami, D., Masuda, S., \& Hirata, R.\ 1996b, \pasj, 48, 45 \bibitem[Kato et~al.(1997)]{kat97egcnc} Kato, T., Nogami, D., Matsumoto, K., \& Baba, H.\ 1997, http://vsnet.kusastro.kyoto-u.ac.jp/pub/vsnet/preprints/\\ EG\_Cnc/ \bibitem[Kato et~al.(2002c)]{kat02v344lyr} Kato, T., Poyner, G., \& Kinnunen, T.\ 2002c, \mnras, 330, 53 \bibitem[Kato et~al.(2001d)]{kat01crboo} Kato, T. {et~al.}\ 2001d, Inf. Bull. Variable Stars, 5120 \bibitem[Kato et~al.(2003c)]{kat03v877arakktelpucma} Kato, T. {et~al.}\ 2003c, \mnras, 339, 861 \bibitem[Kato et~al.(2001e)]{kat01hvvir} Kato, T., Sekine, Y., \& Hirata, R.\ 2001e, \pasj, 53, 1191 \bibitem[Kato et~al.(2000c)]{kat00v803cen} Kato, T., Stubbings, R., Monard, B., \& Pearce, A.\ 2000c, Inf. Bull. Variable Stars, 4915 \bibitem[Kato et~al.(2001f)]{kat01v803cen} Kato, T., Stubbings, R., Monard, B., Pearce, A., \& Nelson, P.\ 2001f, Inf. Bull. Variable Stars, 5091 \bibitem[Kato et~al.(2001g)]{kat01v2051ophiyuma} Kato, T., Stubbings, R., Nelson, P., Pearce, A., Garradd, G., \& Kiyota, S.\ 2001g, Inf. Bull. Variable Stars, 5159 \bibitem[Kato et~al.(2002d)]{kat02v359cen} Kato, T. {et~al.}\ 2002d, \aap, 395, 541 \bibitem[Kato et~al.(2001h)]{kat01hsvir} Kato, T., Stubbings, R., Pearce, A., Dubovsky, P.~A., Kiyota, S., Itoh, H., \& Simonsen, M.\ 2001h, Inf. Bull. Variable Stars, 5109 \bibitem[Kato et~al.(2001i)]{kat01bfara} Kato, T., Stubbings, R., Pearce, A., Nelson, P., \& Monard, B.\ 2001i, Inf. Bull. Variable Stars, 5119 \bibitem[Kato, Uemura(1999)]{kat99qwser} Kato, T., \& Uemura, M.\ 1999, Inf. Bull. Variable Stars, 4802 \bibitem[Kato, Uemura(2000)]{kat00v844her} Kato, T., \& Uemura, M.\ 2000, Inf. Bull. Variable Stars, 4902 \bibitem[Kato, Uemura(2001a)]{kat01v369peg} Kato, T., \& Uemura, M.\ 2001a, Inf. Bull. Variable Stars, 5078 \bibitem[Kato, Uemura(2001b)]{kat01uvgemfsandaspsc} Kato, T., \& Uemura, M.\ 2001b, Inf. Bull. Variable Stars, 5158 \bibitem[Kato et~al.(2002e)]{kat02dmdra} Kato, T., Uemura, M., Ishioka, R., Matsumoto, K., \& Tanabe, K.\ 2002e, Inf. Bull. Variable Stars, 5284 \bibitem[Kato et~al.(2002f)]{kat02cccnc} Kato, T., Uemura, M., Ishioka, R., \& Pietz, J.\ 2002f, \pasj, 54, 1017 \bibitem[Kato et~al.(2002g)]{kat02v592her} Kato, T., Uemura, M., Matsumoto, K., Garradd, G., Masi, G., \& Yamaoka, H.\ 2002g, \pasj, 54, 999 \bibitem[Kato et~al.(2000d)]{kat00qyperiauc} Kato, T. {et~al.}\ 2000d, \iaucirc, 7343 \bibitem[Kholopov et~al.(1985)]{GCVS} Kholopov, P.~N. {et~al.}\ 1985, General Catalogue of Variable Stars, fourth edition (Moscow: Nauka Publishing House) \bibitem[King(1988)]{kin88binaryevolution} King, A.~R.\ 1988, \qjras, 29, 1 \bibitem[King(2000)]{kin00CVevolution} King, A.~R.\ 2000, New Astron. Rev., 44, 167 \bibitem[Kiyota(1999)]{kiy99vzpyx} Kiyota, S.\ 1999, in Disk Instabilities in Close Binary Systems, ed. S. Mineshige \& J.~C. Wheeler (Tokyo: Universal Academy Press), ~107 \bibitem[Kiyota, Kato(1998)]{kiy1998v2051oph} Kiyota, S., \& Kato, T.\ 1998, Inf. Bull. Variable Stars, 4644 \bibitem[Klose(1995)]{klo95exdraixdra} Klose, S.\ 1995, \apj, 446, 357 \bibitem[Kolb, Baraffe(1999)]{kol99CVperiodminimum} Kolb, U., \& Baraffe, I.\ 1999, \mnras, 309, 1034 \bibitem[Kolotovkina(1979)]{kol79cpdraciuma} Kolotovkina, S.~A.\ 1979, Perem. Zvezdy Pril., 3, 665 \bibitem[Krzeminski, Vogt(1985)]{krz85oycarsuper} Krzeminski, W., \& Vogt, N.\ 1985, \aap, 144, 124 \bibitem[Kukarkin et~al.(1968)]{NameList56} Kukarkin, B.~V. {et~al.}\ 1968, Inf. Bull. Variable Stars, 311 \bibitem[Kunjaya et~al.(2001)]{kun01typsc} Kunjaya, C., Kinugasa, K., Ishioka, R., Kato, T., Iwamatsu, H., \& Uemura, M.\ 2001, Inf. Bull. Variable Stars, 5128 \bibitem[Kuulkers et~al.(1996)]{kuu96TOAD} Kuulkers, E., Howell, S.~B., \& van Paradijs, J.\ 1996, \apjl, 462, L87 \bibitem[Kuulkers et~al.(1991)]{kuu91zcha} Kuulkers, E., van Amerongen, S., van Paradijs, J., \& Rottgering, H.\ 1991, \aap, 252, 605 \bibitem[Lasota et~al.(1995)]{las95wzsge} Lasota, J.~P., Hameury, J.~M., \& Hur\'{e}, J.~M.\ 1995, \aap, 302, L29 \bibitem[Leibowitz et~al.(1994)]{lei94hvvir} Leibowitz, E.~M., Mendelson, H., Bruch, A., Duerbeck, H.~W., Seitter, W.~C., \& Richter, G.~A.\ 1994, \apj, 421, 771 \bibitem[Lemm et~al.(1993)]{lem93tleo} Lemm, K., Patterson, J., Thomas, G., \& Skillman, D.~R.\ 1993, \pasp, 105, 1120 \bibitem[Liller(1996)]{lil96vwhyi} Liller, W.\ 1996, Inf. Bull. Variable Stars, 4299 \bibitem[Littlefair et~al.(2003)]{lit03CVBD} Littlefair, S.~P., Dhillon, V.~S., \& Martin, E.~L.\ 2003, \mnras, 340, 264 \bibitem[Matsumoto et~al.(1998)]{mat98egcncqui} Matsumoto, K., Kato, T., Ayani, K., \& Kawabata, T.\ 1998, Inf. Bull. Variable Stars, 4613 \bibitem[Mennickent, Diaz(1996)]{men96cuvel} Mennickent, R.~E., \& Diaz, M.\ 1996, \aap, 309, 147 \bibitem[Mennickent et~al.(2001)]{men01j1050} Mennickent, R.~E., Diaz, M., Skidmore, W., \& Sterken, C.\ 2001, \aap, 376, 448 \bibitem[Mennickent, Diaz(2002)]{men02CVBD} Mennickent, R.~E., \& Diaz, M.~P.\ 2002, \mnras, 336, 767 \bibitem[Mennickent et~al.(1996)]{men96akcnc} Mennickent, R.~E., Nogami, D., Kato, T., \& Worraker, W.\ 1996, \aap, 315, 493 \bibitem[Mennickent et~al.(1998)]{men98tucrt} Mennickent, R.~E., Patterson, J., O'Donoghue, D., Unda, E., Harvey, D., Vanmuster, T., \& Bolt, G.\ 1998, \apss, 262, 1 \bibitem[Mennickent, Sterken(1998)]{men98brlup} Mennickent, R.~E., \& Sterken, C.\ 1998, \pasp, 110, 1032 \bibitem[Meyer-Hofmeister et~al.(1998)]{mey98wzsge} Meyer-Hofmeister, E., Meyer, F., \& Liu, B.~F.\ 1998, \aap, 339, 507 \bibitem[Mineshige et~al.(1998)]{min98wzsge} Mineshige, S., Liu, B., Meyer, F., \& Meyer-Hofmeister, E.\ 1998, \pasj, 50, L5 \bibitem[Moffett, Barnes(1974)]{mof74yzcnc} Moffett, T., \& Barnes, T.~G.\ 1974, \apj, 194, 141 \bibitem[Molnar, Kobulnicky(1992)]{mol92SHexcess} Molnar, L.~A., \& Kobulnicky, H.~A.\ 1992, \apj, 392, 678 \bibitem[Monet et~al.(2003)]{USNOB10} Monet, D. {et~al.}\ 2003, \aj, 125, 984 \bibitem[Munari, Zwitter(1998)]{mun98CVspec5} Munari, U., \& Zwitter, T.\ 1998, \aaps, 128, 277 \bibitem[Naylor et~al.(1987)]{nay87oycar} Naylor, T., Charles, P.~A., Hassall, B. J.~M., Bath, G.~T., Berriman, G., Warner, B., Bailey, J., \& Reinsch, K.\ 1987, \mnras, 229, 183 \bibitem[Nogami(1998)]{nog98CVevolution} Nogami, D.\ 1998, in ASP Conf. Ser. 137, Wild Stars in the Old West, ed. S. Howell, E. Kuulkers \& C. Woodward (San Francisco: ASP), ~495 \bibitem[Nogami et~al.(1998a)]{nog98swuma} Nogami, D., Baba, H., Kato, T., \& Nov\'{a}k, R.\ 1998a, \pasj, 50, 297 \bibitem[Nogami et~al.(2003a)]{nog03dmlyr} Nogami, D., Baba, H., Matsumoto, K., \& Kato, T.\ 2003a, \pasj, 55, 483 \bibitem[Nogami et~al.(2001a)]{nog01v630cyg} Nogami, D., Buczynski, D., Baba, H., \& Kato, T.\ 2001a, Inf. Bull. Variable Stars, 5157 \bibitem[Nogami et~al.(2000)]{nog00kvdra} Nogami, D., Engels, D., G\"{a}nsicke, B.~T., Pavlenko, E.~P., Nov\'{a}k, R., \& Reinsch, K.\ 2000, \aap, 364, 701 \bibitem[Nogami, Kato(1995)]{nog95dhaql} Nogami, D., \& Kato, T.\ 1995, Inf. Bull. Variable Stars, 4227 \bibitem[Nogami, Kato(1997)]{nog97ciuma} Nogami, D., \& Kato, T.\ 1997, \pasj, 49, 109 \bibitem[Nogami et~al.(1998b)]{nog98nyser} Nogami, D., Kato, T., Baba, H., \& Masuda, S.\ 1998b, \pasj, 50, L1 \bibitem[Nogami et~al.(1997a)]{nog97alcom} Nogami, D., Kato, T., Baba, H., Matsumoto, K., Arimoto, J., Tanabe, K., \& Ishikawa, K.\ 1997a, \apj, 490, 840 \bibitem[Nogami et~al.(2001b)]{nog01dvuma} Nogami, D., Kato, T., Baba, H., Nov\'{a}k, R., Lockley, J.~J., \& Somers, M.\ 2001b, \mnras, 322, 79 \bibitem[Nogami et~al.(1996)]{nog96cthya} Nogami, D., Kato, T., \& Hirata, R.\ 1996, \pasj, 48, 607 \bibitem[Nogami et~al.(1998c)]{nog98gxcasv419lyr} Nogami, D., Kato, T., \& Masuda, S.\ 1998c, \pasj, 50, 411 \bibitem[Nogami et~al.(1995a)]{nog95v1159ori} Nogami, D., Kato, T., Masuda, S., \& Hirata, R.\ 1995a, Inf. Bull. Variable Stars, 4155 \bibitem[Nogami et~al.(1995b)]{nog95hvaur} Nogami, D., Kato, T., Masuda, S., \& Hirata, R.\ 1995b, Inf. Bull. Variable Stars, 4163 \bibitem[Nogami et~al.(1995c)]{nog95rzlmi} Nogami, D., Kato, T., Masuda, S., Hirata, R., Matsumoto, K., Tanabe, K., \& Yokoo, T.\ 1995c, \pasj, 47, 897 \bibitem[Nogami, Masuda(1997)]{nog97v1504cyg} Nogami, D., \& Masuda, S.\ 1997, Inf. Bull. Variable Stars, 4532 \bibitem[Nogami et~al.(1995d)]{nog95v725aql} Nogami, D., Masuda, S., \& Kato, T.\ 1995d, Inf. Bull. Variable Stars, 4218 \bibitem[Nogami et~al.(1997b)]{nog97sxlmi} Nogami, D., Masuda, S., \& Kato, T.\ 1997b, \pasp, 109, 1114 \bibitem[Nogami et~al.(2003b)]{nog03var73dra} Nogami, D. {et~al.}\ 2003b, \aap, 404, 1067 \bibitem[Nov\'{a}k(1997)]{nov97vwcrb} Nov\'{a}k, R.\ 1997, Inf. Bull. Variable Stars, 4489 \bibitem[Nov\'{a}k et~al.(2001)]{nov01v2176cyg} Nov\'{a}k, R., Vanmunster, T., Jensen, L.~T., \& Nogami, D.\ 2001, Inf. Bull. Variable Stars, 5108 \bibitem[O'Donoghue(1987)]{odo87brlup} O'Donoghue, D.\ 1987, \apss, 136, 247 \bibitem[O'Donoghue et~al.(1991)]{odo91wzsge} O'Donoghue, D., Chen, A., Marang, F., Mittaz, J. P.~D., Winkler, H., \& Warner, B.\ 1991, \mnras, 250, 363 \bibitem[O'Donoghue, Kilkenny(1989)]{odo89v803cen} O'Donoghue, D., \& Kilkenny, D.\ 1989, \mnras, 236, 319 \bibitem[O'Donoghue et~al.(1987)]{odo87v803cen} O'Donoghue, D., Menzies, J.~W., \& Hill, P.~W.\ 1987, \mnras, 227, 347 \bibitem[Ohtani et~al.(1992)]{Ouda} Ohtani, H. {et~al.}\ 1992, Memoirs of the Faculty of Science, Kyoto University, Series A of Physics, Astrophysics, Geophysics and Chemistry, 38, 167 \bibitem[Olech(1997)]{ole97v485cen} Olech, A.\ 1997, Acta Astron., 47, 281 \bibitem[Olech(2003)]{ole03v1141aql} Olech, A.\ 2003, Acta Astron., 53, 85 \bibitem[Olech et~al.(2003)]{ole03ksuma} Olech, A., Schwarzenberg-Czerny, A., K\c{e}dzierski, P., Z{\l}oczewski, K., Mularczyk, K., \& Wi\'{s}niewski, M.\ 2003, Acta Astron., in press (astro-ph/0306278) \bibitem[Osaki(1995)]{osa95wzsge} Osaki, Y.\ 1995, \pasj, 47, 47 \bibitem[Osaki(1996)]{osa96review} Osaki, Y.\ 1996, \pasp, 108, 39 \bibitem[Osaki, Meyer(2002)]{osa02wzsgehump} Osaki, Y., \& Meyer, F.\ 2002, \aap, 383, 574 \bibitem[Osaki, Meyer(2003)]{osa03DNoutburst} Osaki, Y., \& Meyer, F.\ 2003, \aap, 401, 325 \bibitem[Osaki et~al.(2001)]{osa01egcnc} Osaki, Y., Meyer, F., \& Meyer-Hofmeister, E.\ 2001, \aap, 370, 488 \bibitem[Osaki et~al.(1997)]{osa97egcnc} Osaki, Y., Shimizu, S., \& Tsugawa, M.\ 1997, \pasj, 49, 19 \bibitem[Paczy\'{n}ski(1971)]{pac71CVminimumperiod} Paczy\'{n}ski, B.\ 1971, \araa, 9, 183 \bibitem[Patterson(1979)]{pat79SH} Patterson, J.\ 1979, \aj, 84, 804 \bibitem[Patterson(1998)]{pat98evolution} Patterson, J.\ 1998, \pasp, 110, 1132 \bibitem[Patterson(2001)]{pat01SH} Patterson, J.\ 2001, \pasp, 113, 736 \bibitem[Patterson et~al.(1996)]{pat96alcom} Patterson, J., Augusteijn, T., Harvey, D.~A., Skillman, D.~R., Abbott, T. M.~C., \& Thorstensen, J.\ 1996, \pasp, 108, 748 \bibitem[Patterson et~al.(1993)]{pat93vyaqr} Patterson, J., Bond, H.~E., Grauer, A.~D., Shafter, A.~W., \& Mattei, J.~A.\ 1993, \pasp, 105, 69 \bibitem[Patterson et~al.(1995)]{pat95v1159ori} Patterson, J., Jablonski, F., Koen, C., O'Donoghue, D., \& Skillman, D.~R.\ 1995, \pasp, 107, 1183 \bibitem[Patterson et~al.(2000a)]{pat00iyuma} Patterson, J., Kemp, J., Jensen, L., Vanmunster, T., Skillman, D.~R., Martin, B., Fried, R., \& Thorstensen, J.~R.\ 2000a, \pasp, 112, 1567 \bibitem[Patterson et~al.(1997)]{pat97crboo} Patterson, J. {et~al.}\ 1997, \pasp, 109, 1100 \bibitem[Patterson et~al.(1998)]{pat98egcnc} Patterson, J. {et~al.}\ 1998, \pasp, 110, 1290 \bibitem[Patterson et~al.(1981)]{pat81wzsge} Patterson, J., McGraw, J.~T., Coleman, L., \& Africano, J.~L.\ 1981, \apj, 248, 1067 \bibitem[Patterson et~al.(2002)]{pat02wzsge} Patterson, J. {et~al.}\ 2002, \pasp, 114, 721 \bibitem[Patterson et~al.(2000b)]{pat00dvuma} Patterson, J. {et~al.}\ 2000b, \pasp, 112, 1584 \bibitem[Patterson et~al.(2000c)]{pat00v803cen} Patterson, J., Walker, S., Kemp, J., O'Donoghue, D.~B., \& Stubbings, R.\ 2000c, \pasp, 112, 625 \bibitem[Pavlenko, Dudka(2002)]{pav02v1504cyg} Pavlenko, E.~P., \& Dudka, O.~I.\ 2002, Astrophysics, 45, 1 \bibitem[Politano(2002)]{pol02CVbrowndwarfproc} Politano, M.\ 2002, in ASP Conf. Ser. 261, The Physics of Cataclysmic Variables and Related Objects, ed. B.~T. G\"{a}nsicke, K. Beuermann \& K. Reinsch (San Francisco: ASP), ~293 \bibitem[Politano et~al.(1998)]{pol98TOAD} Politano, M., Howell, S.~B., \& Rappaport, S.\ 1998, in ASP Conf. Ser. 137, Wild Stars in the Old West, ed. S. Howell, E. Kuulkers \& C. Woodward (San Francisco: ASP), ~207 \bibitem[Provencal et~al.(1997)]{pro97crboo} Provencal, J.~L. {et~al.}\ 1997, \apj, 480, 383 \bibitem[Pych, Olech(1995)]{pyc95alcom} Pych, W., \& Olech, A.\ 1995, Acta Astron., 45, 385 \bibitem[Rappaport et~al.(1983)]{rap83CVevolution} Rappaport, S., Joss, P.~C., \& Verbunt, F.\ 1983, \apj, 275, 713 \bibitem[Rappaport et~al.(1982)]{rap82CVevolution} Rappaport, S., Joss, P.~C., \& Webbink, R.~F.\ 1982, \apj, 254, 616 \bibitem[Richter(1968)]{ric68v592her} Richter, G.~A.\ 1968, Inf. Bull. Variable Stars, 293 \bibitem[Richter(1992)]{ric92wzsgedip} Richter, G.~A.\ 1992, in ASP Conf. Ser. 29, Vina del Mar Workshop on Cataclysmic Variable Stars, ed. N. Vogt (San Francisco: ASP), ~12 \bibitem[Robertson et~al.(1995)]{rob95eruma} Robertson, J.~W., Honeycutt, R.~K., \& Turner, G.~W.\ 1995, \pasp, 107, 443 \bibitem[Schoembs(1986)]{sch86oycar} Schoembs, R.\ 1986, \aap, 158, 233 \bibitem[Schoembs, Vogt(1980)]{sch80vwhyi} Schoembs, R., \& Vogt, N.\ 1980, \aap, 91, 25 \bibitem[Semeniuk(1980)]{sem80v436cen} Semeniuk, I.\ 1980, \aaps, 39, 29 \bibitem[Semeniuk et~al.(1997a)]{sem97rzsge} Semeniuk, I., Nalezyty, M., Gembara, P., \& Kwast, T.\ 1997a, Acta Astron., 47, 299 \bibitem[Semeniuk et~al.(1997b)]{sem97swuma} Semeniuk, I., Olech, A., Kwast, T., \& Nalezyty, M.\ 1997b, Acta Astron., 47, 201 \bibitem[Shafter et~al.(1984)]{sha84irgem} Shafter, A.~W., Cowley, A.~P., \& Szkody, P.\ 1984, \apj, 282, 236 \bibitem[Smak(1993)]{sma93wzsge} Smak, J.~I.\ 1993, Acta Astron., 43, 101 \bibitem[Spogli et~al.(2000)]{spo00v503cyg} Spogli, C., Fiorucci, M., \& Raimondo, G.\ 2000, Inf. Bull. Variable Stars, 4944 \bibitem[Spogli et~al.(1998)]{spo98alcomv544herv660herv516cygdxand} Spogli, C., Fiorucci, M., \& Tosti, G.\ 1998, \aaps, 130, 485 \bibitem[Steeghs et~al.(2001)]{ste01wzsgesecondary} Steeghs, D., Marsh, T., Knigge, C., Maxted, P. F.~L., Kuulkers, E., \& Skidmore, W.\ 2001, \apjl, 562, L145 \bibitem[Stellingwerf(1978)]{PDM} Stellingwerf, R.~F.\ 1978, \apj, 224, 953 \bibitem[Stepanian(1982)]{ste82dmdra} Stepanian, J.~A.\ 1982, Perem. Zvezdy, 21, 691 \bibitem[Stolz, Schoembs(1981a)]{sto81tumen2} Stolz, B., \& Schoembs, R.\ 1981a, Inf. Bull. Variable Stars, 1955 \bibitem[Stolz, Schoembs(1981b)]{sto81tumen1} Stolz, B., \& Schoembs, R.\ 1981b, Inf. Bull. Variable Stars, 2029 \bibitem[Stolz, Schoembs(1984)]{StolzSchoembs} Stolz, B., \& Schoembs, R.\ 1984, \aap, 132, 187 \bibitem[Szkody et~al.(2002)]{szk02SDSSCVs} Szkody, P. {et~al.}\ 2002, \aj, 123, 430 \bibitem[Szkody et~al.(1999)]{szk99v1159ori} Szkody, P. {et~al.}\ 1999, \apj, 521, 362 \bibitem[Szkody, Mattei(1984)]{szk84AAVSO} Szkody, P., \& Mattei, J.~A.\ 1984, \pasp, 96, 988 \bibitem[Szymanski, Udalski(1987)]{szy87aylyr} Szymanski, M., \& Udalski, A.\ 1987, Inf. Bull. Variable Stars, 3105 \bibitem[Thorstensen, Fenton(2003)]{tho03kxaqlftcampucmav660herdmlyr} Thorstensen, J.~R., \& Fenton, W.~H.\ 2003, \pasp, 115, 37 \bibitem[Thorstensen et~al.(2002a)]{tho02j2329} Thorstensen, J.~R., Fenton, W.~H., Patterson, J.~O., Kemp, J., Krajci, T., \& Baraffe, I.\ 2002a, \apjl, 567, L49 \bibitem[Thorstensen et~al.(2002b)]{tho02gwlibv844herdiuma} Thorstensen, J.~R., Patterson, J.~O., Kemp, J., \& Vennes, S.\ 2002b, \pasp, 114, 1108 \bibitem[Udalski(1990)]{uda90suuma} Udalski, A.\ 1990, \aj, 100, 226 \bibitem[Udalski, Pych(1992)]{uda92uvper} Udalski, A., \& Pych, W.\ 1992, Acta Astron., 42, 285 \bibitem[Udalski, Szymanski(1988)]{uda88aylyr} Udalski, A., \& Szymanski, M.\ 1988, Acta Astron., 38, 215 \bibitem[Uemura et~al.(2003)]{uem03xzeri} Uemura, M. {et~al.}\ 2003, \pasj, submitted \bibitem[Uemura et~al.(2002a)]{uem02j2329letter} Uemura, M. {et~al.}\ 2002a, \pasj, 54, L15 \bibitem[Uemura et~al.(2002b)]{uem02j2329} Uemura, M. {et~al.}\ 2002b, \pasj, 54, 599 \bibitem[Uemura et~al.(2000)]{uem00iyuma} Uemura, M. {et~al.}\ 2000, \pasj, 52, L9 \bibitem[Uemura et~al.(2001)]{uem01v725aql} Uemura, M., Kato, T., Pavlenko, E., Baklanov, A., \& Pietz, J.\ 2001, \pasj, 53, 539 \bibitem[van Paradijs et~al.(1994)]{vanpar94suumayzcnc} van Paradijs, J. {et~al.}\ 1994, \mnras, 267, 465 \bibitem[van Teeseling et~al.(1999)]{vantee99v592her} van Teeseling, A., Hessman, F.~V., \& Romani, R.~W.\ 1999, \aap, 342, L45 \bibitem[Vanmunster(1997)]{van97pvper} Vanmunster, T.\ 1997, Odessa Astron. Publ., 10, 47 \bibitem[Vanmunster(2001)]{van01wytri} Vanmunster, T.\ 2001, Inf. Bull. Variable Stars, 5031 \bibitem[Vanmunster et~al.(2000a)]{van00kvdra} Vanmunster, T., Skillman, D.~R., \& Fried, R.\ 2000a, Inf. Bull. Variable Stars, 4940 \bibitem[Vanmunster et~al.(2000b)]{van00ouvir} Vanmunster, T., Velthuis, F., \& McCormick, J.\ 2000b, Inf. Bull. Variable Stars, 4955 \bibitem[Verbunt et~al.(1997)]{ver97ROSAT} Verbunt, F., Bunk, W.~H., Ritter, H., \& Pfeffermann, E.\ 1997, \aap, 327, 602 \bibitem[Voges et~al.(2000)]{ROSATFSCiauc} Voges, W. {et~al.}\ 2000, \iaucirc, 7432 \bibitem[Vogt(1974)]{vog74vwhyi} Vogt, N.\ 1974, \aap, 36, 369 \bibitem[Vogt(1980)]{vog80suumastars} Vogt, N.\ 1980, \aap, 88, 66 \bibitem[Vogt(1982)]{vog82zcha} Vogt, N.\ 1982, \apj, 252, 653 \bibitem[Wagner et~al.(1998)]{wag98sxlmi} Wagner, R.~M. {et~al.}\ 1998, \aj, 115, 787 \bibitem[Warner(1974)]{war74zcha} Warner, B.\ 1974, \mnras, 168, 235 \bibitem[Warner(1975)]{war75v436cen} Warner, B.\ 1975, \mnras, 173, 37 \bibitem[Warner(1985)]{war85suuma} Warner, B.\ 1985, in Interacting Binaries, ed. P.~P. Eggelton \& J.~E. Pringle (Dordrecht: D. Reidel Publishing Company), ~367 \bibitem[Warner(1986)]{war86NLabsmag} Warner, B.\ 1986, \mnras, 222, 11 \bibitem[Warner(1987)]{war87CVabsmag} Warner, B.\ 1987, \mnras, 227, 23 \bibitem[Warner(1995)]{war95suuma} Warner, B.\ 1995, \apss, 226, 187 \bibitem[Warner(1998)]{war98CVreviewWyo} Warner, B.\ 1998, in ASP Conf. Ser. 137, Wild Stars in the Old West, ed. S. Howell, E. Kuulkers \& C. Woodward (San Francisco: ASP), ~2 \bibitem[Warner et~al.(1996)]{war96wzsge} Warner, B., Livio, M., \& Tout, C.~A.\ 1996, \mnras, 282, 735 \bibitem[Warner, O'Donoghue(1988)]{war88zcha} Warner, B., \& O'Donoghue, D.\ 1988, \mnras, 233, 705 \bibitem[Warner et~al.(1989)]{war89typsa} Warner, B., O'Donoghue, D., \& Wargau, W.\ 1989, \mnras, 238, 73 \bibitem[Wenzel(1985)]{wen85htcas} Wenzel, W.\ 1985, Inf. Bull. Variable Stars, 2832 \bibitem[Wenzel(1987)]{wen87htcas} Wenzel, W.\ 1987, Astron. Nachr., 308, 75 \bibitem[Wenzel(1993)]{wen93tucrt} Wenzel, W.\ 1993, Inf. Bull. Variable Stars, 3829 \bibitem[Wood et~al.(2002)]{woo02kldra} Wood, M.~A., Casey, M.~J., Garnavich, P.~M., \& Haag, B.\ 2002, \mnras, 334, 87 \bibitem[Wood et~al.(1987)]{woo87crboo} Wood, M.~A., Winget, D.~E., Nather, R.~E., Hessman, F.~V., Liebert, J., Kurtz, D.~W., Wesemael, F., \& Wegner, G.\ 1987, \apj, 313, 757 \bibitem[Woudt, Warner(2001)]{wou01v359cenxzeriyytel} Woudt, P.~A., \& Warner, B.\ 2001, \mnras, 328, 159 \bibitem[Zhang et~al.(1986)]{zha86htcas} Zhang, E.-H., Robinson, E.~L., \& Nather, R.~E.\ 1986, \apj, 305, 740 \end{thebibliography} \end{document}
Return to the Powerful Daisaku Nogami
vsnet-adm@kusastro.kyoto-u.ac.jp